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Lehmer’s Condition

In 1932, Lehmer asked whether there exist composite integers n for which
ϕ(n)|n − 1.
Lehmer showed that such n must be:

odd

squarefree

ω(n) ≥ 7

We know now that for such “Lehmer Numbers”

ω(n) ≥ 14 (Cohen and Hagis, 1980)

n > 1030 (Pinch, 2006)

If 3|n then n > 5.5× 10570 and ω(n) ≥ 212. (Lieuwens, 1970)

If L(x) counts the Lehmer Numbers up to x then as x →∞

L(x) ≤ x1/2

(log x)1/2+o(1)
(Luca and Pomerance, 2009)
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Carmichael’s Condition

A Carmichael number is a composite integer n which satisfies the
congruence

an−1 ≡ 1 (mod n)

for all integers a relatively prime to n.

Korselt’s Criterion (1899)

A composite integer n is a Carmichael number if and only if n is
square-free, and for each prime divisor p of n, p − 1|n − 1.
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Carmichael’s Condition

In 1910 Robert Carmichael found the smallest example, 561, and gave a
new characterization of these numbers:

Let λ(n) be the size of the largest cyclic subgroup of (Z/nZ)×. This
function satisfies

λ(pk) = ϕ(pk) if p is an odd prime or if p = 2 and k < 3

λ(2k) = 1
2ϕ(2k) if k ≥ 3

λ(pk1
1 · · · p

ki
i ) = lcm[λ(pk1

1 ), · · · , λ(pki
i )]

Theorem

A composite number n is a Carmichael number if and only if λ(n)|n − 1.
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Carmichael’s Condition

Note that λ(n)|ϕ(n), so Carmichael’s condition is a weakening of Lehmer’s.

What we know about Carmichael numbers:

They have at least 3 prime factors.

There are infinitely many. (Alford, Granville and Pomerance, 1994) In
fact if C (x) is the count of Carmichael numbers up to x then for
sufficiently large x , C (x) > x0.33. (Harman, 2005)

As x →∞,
C (x) ≤ x1−{1+o(1)} log log log x/ log log x

Heuristically, this is believed to be the actual asymptotic value of
C (x). (Pomerance, 1988)
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New Condition

In a recent paper, Grau and Oller-Marcén define a k-Lehmer number to
be a composite integer n satisfying ϕ(n)|(n − 1)k for a fixed k .

They also look at those composite n which satisfy ϕ(n)|(n − 1)k for some
k . Such n satisfy

rad(ϕ(n))|n − 1

Where rad(m) denotes the product of the primes dividing m.
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New Condition

Notation:
Let κ(n) = rad(ϕ(n)). (Note that κ(n) = rad(λ(n)).)
Let K (x) be the number of composite n up to x for which κ(n)|n − 1.

What do we know about composite n which satisfy this condition?

They are odd. (if n > 2 then κ(n) is even)

They are squarefree. (if p2|n, then p|ϕ(n) and p6 |n − 1)

All Carmichael (Lehmer) numbers satisfy the condition.
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Computations

n C (10n) K (10n)

2 0 4
3 1 19
4 7 103
5 16 422
6 43 1559
7 105 5645
8 255 19329
9 646 64040
10 1547 205355
11 3605 631949

Conjecture: lim
x→∞

K(x)
C(x) =∞
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Upper Bound

In light of this data, it is surprising to see that K (x) satisfies the same
upper bound as C (x).

Theorem

Define L(x) = exp(log x log log log x
log log x ). Then as x →∞,

K (x) ≤ x

L(x)1+o(1)
= x1−(1+o(1)) log log log x/ log log x .

The proof is similar to the proof for the upper bound of Carmichael
numbers.
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Proof Idea

Consider two cases to count n satisfying our condition.

Case 1: n has a large prime divisor p.

Write n = mp, so m ≤ x
p .

κ(mp)|mp − 1, so mp ≡ 1 (mod rad(p − 1)).
Now, p ≡ 1 (mod rad(p − 1)), so m ≡ 1 (mod rad(p − 1)).
Thus there are at most x

p·rad(p−1) possibilities for m > 1.
Summing this over p we have∑

p>L(x)2

x

p · rad(p − 1)
≤

∑
c>L(x)2

x

c · rad(c)
≤

∑
d>L(x)2

d squarefull

x

d
≤ x

L(x)
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Proof Idea

Case 2: n has only small prime divisors.
So n has a divisor d with x

L(X )3
< d ≤ x

L(x) . Again write n = md , so

m ≡ 1 (mod κ(d)).
Now there are at most 1 + b x

dκ(d)c possibilities for m.

∑
d

(
1 +

x

dκ(d)

)
≤ x

L(x)
+

∑
c≤L(x)3

x

c

∑
κ(d)=c

1

d︸ ︷︷ ︸
≤L(x)−1+o(1)

� x

L(x)1+o(1)
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The first 45 n with κ(n)|n − 1

15 3 * 5 703 19 * 37 1843 19 * 97
51 3 * 17 763 7 * 109 1891 31 * 61
85 5 * 17 771 3 * 257 2047 23 * 89
91 7 * 13 949 13 * 73 2071 19 * 109
133 7 * 19 1105 5 * 13 * 17 2091 3 * 17 * 41
247 13 * 19 1111 11 * 101 2119 13 * 163
255 3 * 5 * 17 1141 7 * 163 2431 11 * 13 * 17
259 7 * 37 1261 13 * 97 2465 5 * 17 * 29
435 3 * 5 * 29 1285 5 * 257 2509 13 * 193
451 11 * 41 1351 7 * 193 2701 37 * 73
481 13 * 37 1387 19 * 73 2761 11 * 251
511 7 * 73 1417 13 * 109 2821 7 * 13 * 31
561 3 * 11 * 17 1615 5 * 17 * 19 2955 3 * 5 * 197
595 5 * 7 * 17 1695 3 * 5 * 113 3031 7 * 433
679 7 * 97 1729 7 * 13 * 19 3097 19 * 163
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Two prime factors

Many of these numbers have exactly two prime factors. Carmichael
numbers always have at least 3. How big a contribution can these
numbers make?

Let Kd(x) = #{x < n|n composite, κ(n)|n − 1, ω(n) = d}.

Theorem

As x →∞, K2(x)� x1/2+o(1).

To prove this we observe that κ(pq)|pq − 1 if and only if
rad(p−1) = rad(q−1) and count pairs of primes which have this property.

Assuming a strong form of the prime k-tuples conjecture, we can show
that K2(x) is at least of order x1/2/(log x)2.

If we could show that there are infinitely many pairs of primes p, q with
rad(p − 1) = rad(q − 1), then we could prove limx→∞ K (x)− C (x) =∞.
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Assuming a strong form of the prime k-tuples conjecture, we can show
that K2(x) is at least of order x1/2/(log x)2.

If we could show that there are infinitely many pairs of primes p, q with
rad(p − 1) = rad(q − 1), then we could prove limx→∞ K (x)− C (x) =∞.
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d prime factors

What about Kd(x) for d ≥ 3? For Carmichael numbers it is conjectured
that Cd(x) = x1/d+o(1) as x →∞, and known that C3(x)� x7/20+ε.
(Heath-Brown, 2007) It would make sense to make the same conjectures
for Kd(x).

What we can prove is:

Theorem

For d ≥ 3, Kd(x)� x1− 1
2d .

using the same techniques as the first theorem.
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k-Lehmer Numbers

The bound in the main theorem resolves several conjectures made by Grau
and Oller-Marcén in their paper on k-Lehmer numbers. Our bound shows
that these integers remain less numerous than the primes. (i.e.
K (x) = O(π(x))

What more can we say about the k-Lehmer numbers? (Composite n such
that ϕ(n)|(n − 1)k)

Theorem

Let Lk(x) be the number of k-Lehmer numbers up to x. Then for k ≥ 2

we have Lk(x)� x1− 1
4k−1 .

Recall, that for k = 1 we know L1 ≤ x1/2

(log x)1/2+o(1)

Strong prime k-tuples gives us L3(x)� x1/2/(log x)2 just considering
pairs of primes.
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Thank You!


