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ABSTRACT. We investigate the densities of the sets of abundant numbers and of covering
numbers, integers n for which there exists a distinct covering system where every modulus
divides n. We establish that the set C of covering numbers possesses a natural density d(C)
and prove that 0.103230 < d(C) < 0.103398. Our approach adapts methods developed by
Behrend and Deléglise for bounding the density of abundant numbers, by introducing a
function ¢(n) that measures how close an integer n is to being a covering number with the
property that ¢(n) < h(n) = o(n)/n. However, computing d(C) to three decimal digits
requires some new ideas to simplify the computations. As a byproduct of our methods, we
obtain significantly improved bounds for d(.A), the density of abundant numbers, namely
0.247619608 < d(A) < 0.247619658. We also show the count of primitive covering numbers
up to x is O (x exp ((—ﬁ@ + e) vl1og xloglog x)), which is substantially smaller than

the corresponding bound for primitive abundant numbers.

1. INTRODUCTION

A finite collection of arithmetic progressions is a covering system if every integer is con-
tained in at least one of its progressions. More formally, a covering system is a set of ordered
pairs (a;, m;) of positive integers such that every integer satisfies at least one of the congru-
ences

n = a; (mod m;).
A covering system is distinct if each modulus is used at most once. For example, one can
easily check that

{0 (mod 2), 0 (mod 3), 1 (mod 4), 1 (mod 6), 11 (mod 12)} (1)

form a distinct covering system.

An integer n is a covering number if there exists a distinct covering system where every
modulus is a divisor of n. The example in (1) shows that 12 is a covering number, and in fact
12 is the least positive covering number. It follows from the definition that any multiple of a
covering number is also a covering number, so we are especially interested in those covering
numbers which are not multiples of smaller covering numbers. We call n a primitive covering
number when n is a covering number but is not divisible by any smaller covering number.

This terminology is highly reminiscent of abundant numbers, which, as we will see, are
closely related to the covering numbers. A number n is abundant if o(n) > 2n (where o
denotes the sum of divisors of n). Since o(n) is multiplicative, every multiple of an abundant
number is also abundant, so an integer n is called primitive abundant if o(n) > 2n but no
proper divisor of n is abundant.?

INote, this definition includes the perfect numbers, those n with o(n) = 2n among the primitive abun-
dant numbers. Sometimes these numbers are more properly referred to as primitive non-deficient numbers,
however, for historical reasons we will use the term primitive abundant numbers.
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1.1. Notation. We denote by D(n) the set of divisors of an integer n, and 7(n) = |D(n)|
their count, by w(n) the number of distinct prime factors and Q(n) the total number counted
with multiplicity. We write P*(n) and P~ (n) for the largest and smallest prime factors of n
respectively. For convenience we define P™(1) =1 and P~ (1) = co. An integer is y-smooth
if P*(n) <y and y-rough if P~(n) > y. Throughout p and ¢ will denote primes, py, pa, . . .
will be used to denote the specific prime numbers that divide an integer n, while ¢;, ¢, . ..
will represent the increasing sequence of all prime numbers.

We let o(n) = 3_,,, d be the usual sum of divisors function and let i(n) = Lo(n) be the
“abundancy index” of the integer n. We will denote the natural density of a set S (when it
exists) by d(S), the sets of abundant and covering numbers will be denoted by A and C, and
the set of primitive members of each will be denoted P4 and P¢ respectively. The counting
function of a set S will be denoted S(z).

1.2. Background. Both covering systems and covering numbers have a rich history with fa-
mous problems, many of which have seen significant progress in recent years, see for example
[13, (F13)] for some history, and [2] for a survey of some of the recent developments.
Covering numbers were first defined by Haight [14] in 1979 in a paper answering a question
of Erdds, who asked (in the language of covering numbers) whether there was a threshold ¢
such that if h(n) = # > ¢ then n is guaranteed to be a covering number. Haight showed
this is not the case by exhibiting an infinite sequence of numbers n;, none of which are
covering, with % — o0. Filaseta, Ford, Konyagin, Pomerance and Yu [11] give a short
proof of Haight’s theorem and also answer several related conjectures of Erdés and Graham.
Sun [29] initiated a systematic investigation of covering numbers, proving there are in-
finitely many primitive covering numbers, and giving the following sufficient conditions (re-

stated slightly) for an integer n to be a primitive covering number.

Theorem 1.1 (Sun). Suppose an even integer n factors asn = pi*ps? - - - prrpr+1 with k > 1,
a; > 1 foreach 1 <i<kand2=p; <ps <--- <pp <prs1- If these factors satisfy

(1) piv1 =7(p7* - -pf") + 1 for each 1 <i <k,

(2) prs1 < T(PT'P5* -+ py"), and

(3) Prtr > (px —2)(pr — 3),
then n s a primitive covering number.

He also conjectured that all primitive covering numbers had a form slightly more general
than the above sufficient conditions. This conjecture was disproven by Jones and White [20],
who demonstrated an infinite family of primitive covering numbers which were not of the
form conjectured by Sun. Subsequently Jones, Harrington and Phillips [15] find infinitely
many more counterexamples and provide necessary and sufficient conditions for a number of
the form 29p°q to be a primitive covering number.

Many more general problems and results about covering systems can be framed in terms
of covering numbers. One of the most well known open problems related to covering systems
is the conjecture of Erdds and Selfridge which is equivalent to the following.

Conjecture 1.2 (Erdés-Selfridge). There are no odd covering numbers.

While the conjecture remains open, recent advancements [3,17] show that any odd covering
number would necessarily be divisible by 9 or 15, and furthermore that there are no odd

squarefree covering numbers.
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1.2.1. Abundant Numbers. Davenport [6] first proved that the set of abundant numbers pos-
sesses a natural density without obtaining explicit numerical bounds for it. The following
year, Erdds [9] gave an elementary proof of the existence of this density based on a fun-
damental observation: the density exists if and only if the sum ZaEPA% of reciprocals of
primitive abundant numbers converges, an idea which we will adapt for covering numbers.
The quest for explicit numerical bounds of this density began with the work of Behrend
[4,5]. In 1932, Behrend first showed that d(.A) < 0.47, and in fact proved the stronger result
that A(n)/n < 0.47 for all integers n. The following year, he refined his methods to obtain
the first two-sided bounds 0.241 < d(A) < 0.314. Behrend’s method involves partitioning
integers according to their largest smooth divisor and applying analytic estimates to bound
the contribution from each part, which we describe further in Section 5.1. Subsequent im-
provements came from Salié [28], who improved the lower bound to 0.246, and Wall et al.
(30, 31], who found 0.2441 < d(A) < 0.2909 (while their lower bound was not as strong
as Salié’s, they determined the first digit of this constant). The bounds were substantially
refined by Deléglise [8], who established the bounds 0.2474 < d(.A) < 0.2480, providing the
first three digits. Most recently, Kobayashi [22,23] further improved Deléglise’s approach to
obtain four digits with the bounds

0.2476171 < d(A) < 0.2476475. (2)

Klyve, Pidde, and Temple [21] investigate the density of abundant numbers experimentally
under the assumption that the density of abundant numbers in long intervals behaves like
independent, identically distributed variables with mean d(.A), though they also give some
reasons to question this assumption. Assuming this hypothesis, their data suggest that, with
high confidence, d(A) lies in the interval (0.247619274, 0.247619713). We find below that
d(A) does in fact lie in (the upper part of) this range.

2. RESULTS

Theorem 2.1. The set C of covering numbers has a natural density, and
0.103230 < d(C) < 0.103398.

As mentioned above, the covering numbers share a close relationship with abundant num-
bers and our methods to compute this bound draw heavily from the methods developed to
bound the density of abundant numbers. At the same time, one of our ideas leads to a sub-
stantially more efficient algorithm to compute the density of abundant numbers, which allows
for the following improved bounds, which give us the first 7 digits of d(.A) = 0.2476196.. . ..

Theorem 2.2. The natural density of the set of abundant numbers satisfies the bounds
0.247619608 < d(A) < 0.247619658.

Much of this paper concerns the calculations that lead to the bounds for d(C) and d(.A)
listed above.? We first need to establish that the set C has a density, which will follow from
the following bound on the counting function of primitive covering numbers.

Theorem 2.3. Fore > 0 and sufficiently large x, the count of the primitive covering numbers
up to x is bounded above by

Pe(z) < zexp <<_T\/%g2 + e) V/log z log log:v) . (3)

2C4+ code used to implement these methods is available at https://github.com/agreatnate/AbunDens
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It is interesting to compare this to the known bounds for the count of primitive abundant
numbers. In 1935, Erdés [10] proved that for sufficently large x

Z exp <—clx/log:vlog log a:) < Pu(z) <exp (—ch/loga:log log x)

with ¢; = 8 and ¢y = 1/25. In 1985, Ivic [18] improved this, by showing that these constants
can be replaced by ¢; = V6 4 € and ¢; = 1/v/12 — e. Most recently Avidon [1] improved
both constants further, showing one can take ¢; = v/2 4 ¢ and ¢; = 1 — e. As a corollary we
see that there are far more primitive abundant numbers than primitive covering numbers.

Corollary 2.4. We have lim Palt) — 5o, In fact, for e > 0 and sufficiently large x

T—00 Pe(z)
Pa(x)
#(x) - X ((ﬁ - 6) \/@bglogm) .

Unlike the primitive abundant numbers we cannot prove a lower bound of the same shape
as the upper bound (3). It follows from Theorem 1.1 that for every odd prime p the integer
n = 2P~1p is a primitive covering number and thus® Pe(z) > 101;1%. Using Lemma 3.1 we
can show the following strengthening of Theorem 1.1.

Theorem 2.5. If an even integer n satisfies the hypotheses of Theorem 1.1 with condition
(3) stated there replaced with

(3)f0reach1§i§k’,pk+1>7'< T ),

PiPk+1

then n s a primitive covering number.

This condition is strictly stronger than that in Theorem 1.1, both in that this theorem
implies Sun’s result, and that, in practice, many more integers can be shown to be primitive
covering numbers using this theorem. For example, tabulating integers up to 10°° satisfying
these conditions we find that there are 1433 integers that satisfy the 3 sufficient conditions
of Theorem 1.1 to be primitive covering numbers and 2592 765 integers up to 10°° that are
guaranteed to be primitive covering numbers using Theorem 2.5 instead. However we haven’t
yet been able to use this to improve on the lower bound for P¢(z). More data is given in
Table 1 in the Appendix.

3. PRIMITIVE COVERING NUMBERS

The upper bound we obtain for the number of primitive covering numbers is a consequence
of the following observation, which also follows from Lemma 2.1 of [29].

Lemma 3.1. If n is a primitive covering number then
Prn) <7 (585) (4)

Proof. Suppose n is a primitive covering number, and let p = P*(n), with p* being the
largest power of p dividing n. Then n/p is not a covering number, meaning that at least
one residue modulo n/p is left uncovered by any residue system modulo the divisors of n/p.

3For comparison, a number of the form 2Fp is a primitive abundant number whenever 2¢ < p < 2F+1,
VT

logz

Thus, up to x there are asymptotically >

logz
log log x

many primitive abundant numbers of this form up to x, while

there are only > many primitive covering numbers of this form.
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This uncovered residue lifts to p distinct residues left uncovered by the same system modulo
n, each having a distinct remainder modulo p*. In order for n to be a covering number, it
is necessary to cover each of these residues using a modulus that is a divisor of n but not
a divisor of n/p. Each such divisor is necessarily divisible by p*, meaning any congruence
class modulo such a divisor can cover at most one of these p uncovered residues. A covering
will thus require at least p divisors of n which are not divisors of n/p, of which there are

7(n) = 7(n/p) < 7(n/p).
From this we conclude that p < 7(n/p). O

The key idea of the bound of Theorem 2.3 is that numbers typically have relatively few
divisors, while the largest prime factor of an integer is typically relatively large, and so
integers that satisfy the inequality (4) are rare. To make this precise, we will need estimates
for the counts of smooth numbers and for numbers with many divisors. A well known bound
for smooth numbers is that ¢ (z, y), the count of integers up to x whose largest prime divisor
is at most y, satisfies

(o) =voxp ((~1+ o) % tog ({20 ) 5)

logy logy
for a large range of y. De Bruijn [7] showed that the above approximation holds so long as
x>y > exp ((log z)*/37¢), which won’t quite suffice for our purposes. However Hildebrand
[16] extended this to show that (5) holds as long as x > y > exp ((loglog )*/3*¢). Norton
[26] gives an estimate for A(z,y), the number of integers up to x with 7(n) > y, namely

A(x,y) = xexp ((—1 + 0(1))12§g log log y) (6)

holds for x > y > (log z)?182Fe,

Proof of Theorem 2.3. Set y = exp (\/10g210g x) If n < z is a primitive covering number
then by (4) we cannot have both P*(n) > y and 7(n/P*(n)) < y. Hence, it must be the

case that n is counted by at least one of ¥ (z,y) or A(x,y). So then, using (5) and (6) we
find that

Palz) < op(w,y) + Az, y)

1 1 1
= rexp ((—1 +0(1)) %6t log ( ng)) + zexp ((—1 +o(1) 8y loglogy)

logy logy log 2
= Texp ((—% +0(1))/ 1553 log  log log a:) :
which we can rewrite in the form of the bound (3) in the statement of the theorem. U

Importantly for our purposes, this bound suffices to show the following.

Corollary 3.2. The reciprocal sum % of primitive covering numbers converges.

ceEPe

Erdés [9] first proved the analogous result for primitive abundant numbers, which he used
to give an elementary argument that the natural density of the abundant numbers exists.
(The existence of the density had already been shown by Davenport [6] a year prior.) The
convergence of this reciprocal sum of primitive covering numbers then gives, by the same

argument as Erdds, that the covering numbers have a density.
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Corollary 3.3. The natural density d(C) exists.

Recently Lichtman [24] has investigated the numerical value of the reciprocal sum of
primitive abundant numbers, showing that it is bounded between 0.348 and 0.380. Due
to the difficulties in identifying primitive covering numbers, (discussed further in section
7 below) obtaining similar bounds for the reciprocal sum of primitive covering numbers is
likely to be a much more difficult problem. The sum of the reciprocals of the known covering
numbers up to one million, listed in Table 2 shows that the reciprocal sum of primitive
covering numbers is at least 0.12380.

4. UPPER BOUNDS FOR c¢(n)

We obtain upper bounds for the density of the set of covering numbers following the
methods that have been developed to bound the density of the abundant numbers. We
introduce two functions which will allow us to compare the set of covering numbers to the
set of abundant numbers. For a positive integer n we first define r(n) to be the maximum
cardinality of the set of residues that can be covered by a set of congruences with distinct
moduli greater than 1, each dividing n, and then set

c(n) =1+ m
n

Thus, by definition, an integer n is a covering number if and only if r(n) = n and ¢(n) = 2.
This function ¢(n) is naturally related to the sum of divisors function as seen from the
following lemma.

Lemma 4.1. For each n we have ¢(n) < # = h(n).

Proof. Each congruence class k (mod d) with d|n contains exactly n/d residue classes modulo
n. Therefore,

c(n)zl—i—Ln)gl—i-l E:lzzdzm. O

Using a famous result of Newman [25] that any distinct covering system covers some
congruence class multiple times, we can strengthen this, when n is a covering integer, to
2 =¢(n) < h(n) and so we see that any covering number is abundant.

Corollary 4.2. The covering numbers are contained in the abundant numbers, i.e. if n is a
covering number then o(n) > 2n.

This was previously observed by Sun [29]. It follows from this corollary that the density
of covering numbers is at most the density of abundant numbers, and so using the upper
bound for the abundant numbers obtained by Kobayashi [22] we have that

d(C) < d(A) < 0.24765. (7)

We can improve the upper bound from Lemma 4.1 in a variety of ways. First we obtain
the following improved bound for ¢(n).

Theorem 4.3. For any coprime integers m,n we have

c(mn) < c(m)h(n).
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Proof. First, since the divisors of m (exceeding 1) can cover at most r(m) residues modulo
m, those same divisors can cover at most nr(m) residues modulo nm. More trivially, each
divisor d (exceeding 1) of n can cover at most " residues modulo nm.

Now, fix a divisor d of n, d > 1 and consider all the moduli of the form d¢ with ¢|m and
¢ > 1. Since, as before, these divisors of m can cover at most r(m) residues modulo m, the
corresponding congruences modulo df can cover at most 5r(m) residues modulo nm. Thus,
summing each of these contributions we have

c(mn) =1+ T(TZL:) <1+ % <m~(m) +3 (% + ”Tilm)) )

dn
d>1
r(m) 1 r(m) 1
SRR D R D
din din
d>1 d>1
- (1 + Lm)) (1 + Z é) = ¢(m)h(n). O
m d|n
d>1

We conjecture that this can be strengthened.

Conjecture 4.4. The function c¢(n) is sub-multiplicative, that is c(nm) < c(n)c(m) whenever
ged(n,m) = 1.

This conjecture has been verified numerically for all m,n with mn < 10 000.

4.1. Almost-covering numbers. As we will see below, our study of covering numbers
(especially primitive covering numbers) will lead us to consider a closely related class of
numbers [27, A160560] which, while not covering numbers, are as close as possible to being
covering numbers.

Definition 4.5. We call an integer n an almost-covering number if r(n) = n—1. In particular
n is an almost-covering number if it is not a covering number, but it is possible to cover all
but one of the residue classes modulo n with distinct moduli corresponding to the divisors of
n greater than 1. A collection of arithmetic progressions with distinct moduli which covers
all but one residue modulo n is an almost-covering.

Note that the integer 1 is, by our definition (somewhat vacuously), an almost-covering
number. Many of Sun’s [29] arguments implicitly use the idea of almost-covering numbers
without defining them. A strengthening of his arguments gives the following.

Theorem 4.6. Suppose n > 1 factors as

n=pipyt Pt (8)
with 2 =py < py < -+ < pg. If, for each 1 <1 < k, we have
pi = (ar+1)(ae+1) (i +1)+1 = 7 (pP"ps2---pi7") + 1 (9)

then n 1s an almost-covering number.

Henceforth we refer to almost-covering numbers in the form of this theorem as Sun-almost-

covering numbers. We will also frequently need to reference the largest (greedily constructed
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using small prime divisors) Sun-almost-covering divisor of an integer n, and we will denote
this divisor £ = £(n). We define this divisor formally below.*

Definition 4.7. Write the factorization of n as in (8). Set ¢(n) = 1 if n is odd and, if n is
even take j < k to be the largest index such that p; satisfies (9) for every i < j. We then
define the Sun-almost-covering-divisor of n to be

{1 n 1s odd

l(n) = N o
( ) 2a1p22 .. p]J

n 1s even.
Almost-covering numbers play a fundamental role in the distribution of primitive covering
numbers. For example, a short calculation shows the following.

Corollary 4.8. If n is an almost-covering number and PT(n) < p < 7(n) then pn is a
covering number.

Note that pn in the corollary above may not be a primitive covering number. For example,
n = 2% x 11 is a Sun-almost-covering number, so, since 13 < 7(n) = 20 we find that 13n is
covering, but it is not a primitive covering number since 2% x 11 x 13 is also a covering number,
as shown in [20]. Applying Corollary 4.8 to the special case of the almost-covering numbers
obtained from Theorem 4.6, we recover Theorem 1.1 of [29]. There are almost-covering
numbers which are not Sun-almost-covering, the smallest we are aware of is n = 219 x 13 x 17.
Using this and Corollary 4.8 we see, for example, that 219 x 13 x 17 x 41 is a covering number.
We can even use a modified version of the proof of Theorem 2.5 to show that it is a primitive
covering number, which gives another counterexample to Sun’s conjecture.

We can also now prove Theorem 2.5.

Proof of Theorem 2.5. Suppose n satisfies the first two hypotheses of Theorem 1.1. Then
n = {pyy1 where £ = pi"py? - - - pi* is a Sun-almost-covering number and so n is a covering
number by Corollary 4.8.

Thus it remains only to show that n is a primitive covering number, for which we use the
new condition (3) of Theorem 2.5. Suppose for a contradiction that n were not a primitive
covering number. Then n has a primitive covering divisor d|n. It must be the case that
Pr+1|d since otherwise d|¢, and it isn’t possible for a divisor of an almost-covering number to
be covering. Thus, since d is a proper divisor of n, there must be some p;, with ¢ < k, such
that p; divides d fewer times than n. But then, using the new Condition (3),

Tl — ) <7 < Pk+1
Pr+1 PiPk+1

but, using Lemma 3.1, this means d is not a primitive covering number, a contradiction. [

Before we give a proof of this stronger result, we need the following Lemma which will be
used several times in the remainder of the paper.

Lemma 4.9. If an integer n factors as n = {m with £, m coprime and ¢ is an almost-covering
number, then there exists a set of congruences using distinct moduli dividing n which covers a
mazximal number, r(n), of the residues modulo n and the subset of congruences whose moduli
divide £ form an almost-covering of the residues modulo (.

4Note that in certain edge cases where n is a covering number ¢(n) may not be the largest divisor of n
that is Sun-almost-covering. For example, taking n = 2 x 3* x 7 x 11, we find, by applying Definition 4.7
that £(n) = 2 x 3%, even though d = 2 x 3% x 11 is a divisor of n that is Sun-almost-covering.
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Proof. Fix a set C of congruences with distinct moduli dividing n which cover r(n) residues
modulo n, and consider those congruences in C' with moduli dividing ¢. If they form an
almost-covering of the residues modulo ¢ we are done, so suppose they do not. Then there
are at least two residues modulo /¢ left uncovered by these congruences. Pick one of these
uncovered residues, say a (mod ¢). Now, create a new system of congruences C’, consisting
of an almost-covering of the residues modulo ¢ which covers every residue except a (mod /),
and all of the same congruences as in C' for each modulus that does not divide /.

We now check that every residue modulo n covered by C' is also covered by C’. Fix a
residue modulo n covered by C. If it was covered by a congruence with modulus dividing ¢
in C, then it is still covered by one of the congruences with moduli dividing ¢ in C” (though
possibly by a different congruence). On the other hand, if it was covered by a congruence
with moduli not dividing ¢ in C, it is still covered by the same congruence class in C’. Thus
(' is a set of congruences satisfying the conclusion of the lemma. 0

Proof of Theorem 4.6. We prove that n with factorization (8) satisfying the hypothesis of
the theorem is an almost-covering number by induction on k. If £ = 1, then n = 2% and a
simple computation shows that n is an almost-covering number. Now suppose that it holds
for k — 1, and consider n = £p;* where £ = p{*p3? - - - p,*]" is an almost-covering number by
the induction hypothesis, and py, = 7(¢) 4+ 1 by the hypotheses of the theorem.

Now, applying Lemma 4.9, since ¢ is an almost-covering number coprime to pp we can
assume, without loss of generality, that a set of congruences covering a maximal number
of residues modulo n forms an almost-covering of the residues modulo ¢ when restricted to
the congruences with moduli coprime to pr. Thus these congruences coprime to p, cover
all but one arithmetic progression modulo ¢ and, by shifting all of the congruence classes as
necessary, we can assume this uncovered progression is 0 (mod ¢). It remains to cover as
much of this arithmetic progression as possible using moduli divisible by px. The number
of residues modulo n in this progression covered by any given divisor d of n is %fﬂ) =

I%d(d?@ = p*~", where 7 is the number of times that p; divides d.

For each 1 <7 < oy, there are exactly 7(¢) = pr — 1 divisors of n divisible by pi but not
by p}jl and so we find that

i< (S ) nk - gp

n ap—1 A pak_l
e R R L ]
1=0

On the other hand, by choosing, for each of the 7(¢) = p, — 1 divisors dy,ds,...d @ of n
exactly divisible by p, the congruence class £ - pi ' - j (mod d;) for j € {1,2,...7(()}, we
can see, between these congruences and the congruences modulo divisors of ¢, that every
residue modulo n is covered except the residue 0 (mod n). Thus we can conclude that n is
an almost-covering number. 0

4.2. Complementary Bell numbers and generalizations. If the moduli my, mo,...my

are coprime, it follows from the Chinese remainder theorem that the density of those integers
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contained in any residue system with these moduli is

T I (S T S e

m
1<i<k 1<i<k M 1<i<j<k

The following generalization follows likewise from the Chinese remainder theorem by a
similar inclusion-exclusion argument.

Lemma 4.10. Suppose that M = {my, my,...my} is any set (or multiset) of moduli, then
the proportion of integers covered by any residue system whose moduli are the elements of
M is at most

1 1 1 _1)ISH1
Z m Z mm Z mm'm’ Z (lcnz(S) ’

meM m,m’'eM m,m/ m' e M SCM, S#£0D
ged(m,m’)=1 pairwise coprime S pairwise coprime

We now apply Lemma 4.10 to the case where the moduli are the set D~;(n) C D(n) of
divisors, exceeding 1, of some integer n. This allows us to bound ¢(n) as

C(n):1+@<1+ > (=pBEe 1+ Z — Y (-l
n - lem(S)
SCDx>1(n), S#£0, d|n, d>1 SCDx1(n)
S pairwise coprime lem S=d

S pairwise coprime

=1+ Z Z 1) 418y (w(d), k) (10)

dln,d>1 1<k<w

where S (i, k) denotes the Stirling number of the second kind, which counts the number of
ways to partition 4 distinct objects (in our case the ¢ = w(d) distinct prime powers dividing
d) into exactly k nonempty subsets (the k elements of S, each the products of the prime
powers from each subset). So, for any divisor d|n we have

Sy(w(d), k) = > 1.
SCDs1(n)
lem S = d, |S|=k
S pairwise coprime
Note that this innermost sum of (10) depends only on w(d). Its values are the (negative
of the) sequence of complementary Bell numbers (or Rao Uppuluri-Carpenter numbers). In
what follows, it will be useful to define a generalization of these numbers as follows. We set
B(r,n) = — Z(—r)ksg(n,k).

k=1

So here, B(1,n) is the negative of the sequence of complementary Bell numbers.

Theorem 4.11. If an integer n factors as n = £b where £ and b are coprime and { is an
almost-covering number, then
(—1 1 B(7(£),w(d))
<14 — - 2T, wid)).
cn) <1+ 7 + Z 7
d|b,d>1
10
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Proof. Let C be a set of congruences realizing ¢(n). By Lemma 4.9 we can assume, without
loss of generality, that the congruence classes in C' form an almost-covering of the residues
modulo ¢, when restricted to the divisors of /. Furthermore, by adding a constant to each
congruence, we can assume that those congruences in C' with moduli dividing ¢ cover every
residue except 0 (mod ¢), so it remains to consider the arithmetic progression 0 (mod /).
So, for every congruence r (mod m) in C' with modulus m that is not a divisor of ¢, we can
assume that r =0 (mod ged(m, 0)).

Thus, the residues modulo n in the progression 0 (mod ¢) that are covered by these con-
gruences are the same as those covered by the set C’ in which we replace each modulus m 1 ¢
in C, with a modulus m’ = m/ged(m, ¢), and leave the the residue class unchanged. Note
that the moduli in C” are no longer distinct—each modulus occurs 7(¢) times.

Furthermore, since the moduli of C’ are now coprime to ¢, they are now divisors of b
(greater than 1 since m ¢ £), and the number of residues modulo n in the progression 0
(mod ¢) covered by C” are the same as the number of residues modulo b covered by C’. We

thus find that
. r(n) . (-1 1 TT(g)(b)
c(n) =1+ - =1+ 7 +£< ) (12)

where ry(b) denotes the maximum cardinality of the residues modulo b that can be covered
by a set of congruences with moduli greater than 1 dividing b in which each modulus appears
at most k times. (Note that r(b) = r1(b).) We conclude by bounding the expression ”(“fb)(b)
with a calculation analogous to that of (10). Applying Lemma 4.10 to the multiset M’ of

moduli in C’, we find that

() _ (-pB
b - Z lemS

SCM’, S#0
S pairwise coprime

Note that while M’ is a multiset, the pairwise-coprime condition on the summands S ensures
that each S is in fact a set. Furthermore, since each divisor of b appears with multiplicity
7(¢) in M’, any fixed subset S C D(b) appears 7(£)!°! times in the sum above, and so we
rewrite the expression above as

TT(g)(b) Z T(€)|S| (—1)|S|+1 _ Z (_T(£>>\S|

<
b SCD(b), S#0 lem & SCD(b), S#0 lem &
S pairwise coprime S pairwise coprime
1
S - _ |5| - _
=25 2 DI > 1
d|b,d>1 SCD(b) dlb,d>1 1<k<w(d SCD(b)
lemS = d lem S = d, |S|=k
S pairwise coprime S pairwise coprime
B(r(£), w(d))
¥ Z Selwld).h) = D ==
d|b,d>1 1<k<w d|b,d>1
Inserting this bound into (12) completes the proof. |
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5. UPPER BOUNDS FOR THE DENSITY OF COVERING NUMBERS

We are now able to improve on the bound (7) by combining the bounds of Lemma 4.1
and Theorem 4.11 with techniques developed to bound the density of of abundant numbers
from above. We first recall briefly the approach introduced by Behrend [4,5] and refined by
Deléglise to obtain the bounds 0.2474 < d(.A) < 0.2480. We only sketch the argument here,
see [8] or [22] for details of the calculations.

5.1. The approach of Behrend-Deléglise. Let y, 2z > 0 be fixed parameters and let
Ay(z) =d({n: P (n) >y,h(n) > x})

denote the density of the set of y-rough integers whose abundancy index exceeds z. (Note
that d(A) = As(2).) Behrend’s approach starts with the observation that, since any abun-
dant number a can be partitioned as a = nm with P*(n) < y and P~(m) > y, it must
be the case that 2 < h(a) = h(n)h(m). Thus m, the y rough component of a must satisfy

the inequality h(m) > %, and thus be counted in the density A, (%) We can thus

decompose the density d(.A), for any value of y, as

(i) 2 o (i)

=
=
I
SHIES
N
<
AN
=
S\I\D
~
I

n n<z n>z
Pt (n)<y Pt(n)<y Pt(n)<y
1 2 1 1
< —A, | — 1—- -
<2 y(h(n))*@( p)> 2
n<lz p<y n>z
PT(n)<y Pt (n)<y
1 2 1 1
= A=)+ |1- 1—= = 1. (13
> i) -I0-5) Zoa) o
Pt(n)<y P*(n)<y

In the second line above, the value of A,(x) is bounded from above by the density of all
y-rough numbers, and in the third line, the second term, which denotes the density of those
integers whose largest y-smooth divisor exceeds z, was rewritten as one minus the density of
the complement of that set. The terms A, (z) appearing in the first sum are then bounded

using moments of the function hy(n) == > = ] (1+ 1% +-+ p%) A calculation
dn p*lIn
P~ (d)>y P2y

(using that h,(n) > 1 for all integers n) shows, for any r > 0, that

Ay(x) < 'U;’;—__ll H (1 — 1) (14)

p<y p

where

00 <1+}D+---+%) —<1+}3+~--+ﬁ>

Loy = J}lggoiz%(nyzn 1+Z P

n<z P>y 1=1

. (15)

is the r-th moment of h,(n).
12



Deléglise then obtains his numerical upper bound by taking y = 500 and z = 10* in
(13) and (14), using explicit upper bounds for the terms in the product expression (15), and
finally taking for each application of (14) the minimum value obtained as r ranges over the
powers of 2 between 1 and 4096.

5.2. Initial bounds for the density of covering numbers. By using the observation
of Theorem 4.3 in place of the multiplicativity of the function h(x) we can immediately
adapt Behrend’s approach to obtain upper bounds for the density of the covering numbers.
Following the argument used to derive (13) we see that

1 2 1 2 1 1
w0 3 ()= Xoaal) [0 S o) oo
Pt(n)<y pf(_nz)@ Py PwTLL(_an<y

When trying to use this expression to obtain numerical upper bounds following Deléglise, one
quickly finds that this bound is far less useful in practice than (13) is for abundant numbers,
due to the relative difficulty of computing c¢(n) vs h(n). While h(n) can be computed
very quickly, even for very large numbers so long as their factorization is known, exact
computation of ¢(n) quickly becomes intractable even for relatively small values of n (see
Section 7 for further discussion of the computation of ¢(n).)

Since we seek here upper bounds for d(C), we can replace ¢(n) with an an easier to compute
upper bound ¢ (n) based on Theorem 4.11. To make effective use of this theorem, we would
like to take a large almost-covering divisor of n, however determining rigorously the largest
almost-covering divisor of n is difficult in general. Instead, we take, for a fixed integer n the
largest almost-prime divisor in the form of Theorem 4.6 and define the following.

Definition 5.1. To define the function ¢(n) we first £ = ¢(n) to be the sun-almost-covering
divisor of n as defined in Definition 4.7. We then write b = 7 = p?jjl DRk
If P~(b) = pj1 < 7(¢) then n is a covering number by Corollary 4.8 and we define
d(n) = 2, otherwise we define
(-1 1 B(7(€),w(d))
! =14+ -——1 = TN NPT
d(n) +——+73 7 :
dlb,d>1
which is the expression on the right-hand side of (11).

Note that by construction (and Theorem 4.11) we have ¢(n) < ¢(n).> We can thus replace
each occurrence of ¢(n) in (16) with ¢/(n) and obtain a new upper bound for d(C) which is
substantially more useful in practice.

1 2 1 2 1 1
w0 3 ()= T oaalam) [ I(-5) o) o
PT(n)<y pf(nz)q Py pf(—nzj@
Nevertheless, computation of ¢/(n) is still much slower than h(n), and so we now make an
additional improvement which will correspond to an analogous improvement to the applica-
tion of (13) when computing d(A) as well. We present the improved computation of d(.A)
first, for simplicity, before noting a few modifications necessary for the computation of d(C).

SUnlike ¢(n), for which we have ¢(n) < 2 by definition, it is possible that ¢/(n) > 2, even for n which are
not covering numbers. However this won’t have an effect on our arguments.
13



5.3. A more flexible version of Deléglise’s bound. The approach taken by Deléglise
is to sum, as in (13), over all n in a “large box,” namely all integers n satisfying n < z,
P*(n) <y, with increasingly more precise numerical bounds obtained by taking larger values
of z and y (at the cost of longer calculations). When implementing this approach, to bound
d(C) using (17) with even moderate-sized values of z and y, one quickly observes that the
algorithm spends a substantial amount of time dealing with values of n which are relatively
inconsequential to the sum (large values of n with ¢/(n) relatively small) as well as integers n
which cannot correspond to any covering numbers (such as n coprime to 15, which we know
cannot be covering numbers after the work of Balister, Bollobas, Morris, Sahasrabudhe, Tiba
[3]). The more substantial contribution to the sum comes from values of n with ¢/(n) close
to 2, which typically correspond to n divisible by high powers of 2. This observation leads to
the following, more general version of (13). We first explain how the idea works for abundant
numbers, and then discuss how to treat covering numbers by a similar approach.

Definition 5.2. For an ordered pair of integers (a, q) satisfying P*(a) < ¢, we denote by
M,, ={av: P~ (v) > q}
the set of g-rough multiples of a. Now, suppose that W is a set of such pairs (a, ¢) with the

property that for any two pairs (a, q), (a/,¢) € W, the sets M, , and M, , are disjoint. If,
in addition, the sets M, , partition the positive integers,

N= || M, (18)
(a,q)eW

then we say that the pairs W form a smooth-rough-divisor-partition of the integers. For
such a set W, it will be sometimes be convenient to consider separately the two subsets
We ={(a,q) € W: Pt(a) < q} and W= :={(a,q) € W: Pt(a) =q},so W =W_ULW_.
For example, take W = {(1,7),(2,5), (3,5), (4,3), (5,5), (6,5), (8,2),(9,3), (18,3) }. In this
case we have
We ={(1,7),(2,5),(3,5),(4,3),(6,5)},
wW_ =1{(5,5),(8,2),(9,3),(18,3)}

and it is straightforward to check that W forms a smooth-rough-divisor-partition. Note, if
W is finite, then W_ is necessarily nonempty, however it is possible for W_ to be empty if
W is infinite.%

Now, suppose that W is any finite smooth-rough-divisor-partition of the integers. Then

d(A)= Y d({m e M., : h(m) > 2})

(a,g)eW
= Y d({me My, :h(m)>2}) + d({m € M, 4 : h(m) > 2})
(a,9)eW< (a,9)EW=
= Z 1A (i) + Z 1al({m' : P~(m') > q, h(m'a) > 2}) (19)
a "\ ha) a ' - -
(a,9)EW< (a,q)EW=

In the second sum the largest prime divisor of a is ¢ (since (a, q) € W_) so we can’t necessarily
split h(m’a) using the multiplicativity of h, as ¢ may divide m’ as well as a.

SFor example W = W = {(2%,3),i > 0}.
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To handle W_ we break into two cases based on whether h(a) > 2. First we treat those
(a,q) € W_ with h(a) > 2. In this case every element of M, , is abundant, so we treat these
elements exactly as

1 e
E ad({m.P(m)Zq, h(m'a) > 2}) = 5 ”(1——)
(a,q)eW= (a,q)eW= p<q
h(a)>2 h(a)>2

Note that the sum above also serves as a lower bound for d(.4). We now treat the remaining
elements of W_. Letting a, and m” denote the largest divisor of a and m' respectively not
divisible by ¢ and partitioning the integers m’ = ¢'m” according to the power of the prime
q dividing m’, we can bound the density appearing in the second sum by

éd({m’ L P=(m') > q, h(m'a) > 2}) (20)

1 & , ,
== E d ({¢'m" : P~(m") > q, h(¢'m"a) > 2})
=0

_ 22 %d ({m” : P (m") > ¢, h(m") = h(;a) }>

1 2(1—1/q)
= al=1/g Aq+1< h(ay) )

In the final step above, since a is not coprime to ¢ (but q, is), we bounded

i 1 1 h(ag)
h(q'a) < h(ay) (1+q+q_+ ) (1-1/q)

Inserting this in (19) gives the upper bound

2(1-1
Ao (2520)

1
s ¥ (i) X alI(-0)r X o)
(a,q)€W<a (a,)eW= p<q (a,q)EW= a(l_l/q)
h(a)=2 h(a)<2

while recalling the observation about the lower bound for d(.A) gives

> H(1——> < d(A). (22)

(a,9)eW=  p<q
h(a)>2

5.3.1. Bounding covering numbers. A similar bound holds for d(C). In this case we can derive
an equation identical to (21) with ¢ in place of h in each of the sums by using Theorem 4.3
in place of the multiplicativity of h in the first sum. In the first two sums we then bound
¢ by ¢. In the third sum, however, we work a bit harder to bound the expression ¢(m’a)
appearing in the expression analogous to (20). Writing m’a = m”a,q’ as above, we have
c(m'a) < h(m")c(a,q’). We then bound c(a,q’) by a function ¢(a,, q) defined as follows.
First, if a, is a Sun-almost-covering number and 7(a,) > ¢ — 1 (note that in this case the

number a,q is already either a covering number or a Sun-almost-covering number) then we
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use the trivial bound c(a,q’) < ¢(a,,q) = 2. Otherwise we take ¢ to be the Sun-almost-
covering divisor of a,, defined as in Definition 5.1 (which may still be a, itself), and set

b= “7‘1 and then consider

clagg’) < ¢laga)) =1+ =+

(—1 1 B(7(0),w(d 1 B(r(0),w(d
3 Br0w@) 1 g B(o).u()

dlb, d>1 dlbg?, q|d

< d(ay) + 1 (L) Z B(r(0),w(d) +1) = ¢(aq, q). (23)

Now, having defined ¢(a,, ¢) in both of the cases when a, is a Sun-almost-covering number
and 7(ay) > g — 1 (here ¢(a,, ¢) = 2) and otherwise by (23) we can bound d(C) analogously
to (21) as

1 2 1 1 q+1 c(aq,q)
d(C) < E —Aq(,()>+ E —||(1——)+ E —<1_1/> . (24)
(a,q)EWy ¢ cla (a,q)EW= a p<q p (a,q)EW= a q
d(a)>2 c(a)<2

6. UPPER BOUND COMPUTATIONS

The bounds described in Section 5.3 apply for any set W satisfying (18). In fact, the
approach of Deléglise is essentially to take, for fixed ¢, W to be the infinite set W = {(a, q) :
P*(a) < ¢} (note in this case Wy is empty, since the set is infinite). He then applies a
different argument to handle the large values of a.

Thus, to bound these densities, it suffices to describe a set W and then calculate the
corresponding expressions in (21) and (24), so the goal now is simply to pick sets W which
result in as low of a bound as possible in a minimal amount of time. After some experimen-
tation, we found that a computationally efficient way to select the sets W so that all of the
summands appearing in the W) sums of (21) and (24) were of either roughly uniform size
or correspond to values of a with h(a) > 2 (respectively ¢/(a) > 2) that were encountered
along the way. In the case of A, these a values with h(a) > 2 can also be used to compute
a corresponding lower bound for d(A), however since ¢/(a) is only an upper bound for ¢(a),
we don’t similarly obtain a lower bound for d(C) in the same manner.

In these calculations we need an upper bound for the quantities A,(z), which we numeri-
cally compute following the methods of Deléglise as outlined in Section 5.1. Unlike Deléglise,
we will need to compute these values for a wide range of values of y. We largely follow his

methods, except that we use a much larger values of y (and a wider range of moments) which
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requires strengthening some of his inequalities to handle larger primes. The details are de-
scribed in Appendix A. In what follows here we denote by A,(x) > A,(z) the numerical
upper bound obtained by these calculations for a fixed x and y.

Our algorithm then proceeds as follows. We first fix parameters () and Z with () a prime.
We will consider values of ¢ < @) and Z is a parameter that corresponds roughly with the
size of the summands we will consider in the W_ sums.

For abundant numbers, we define

f(n, k) = %

where ¢ denotes the k-th prime number. After some numerical experimentation, we found
that this function was a good measure of how deep to traverse the tree of smooth numbers
to obtain good numerical values. We start by taking the set of integers

S={n:h(n)<2,q=P"(n)<Q,f(nk+1)>Z}.
We then take
Wi ={(nqe,q) : n € S,PT(n) < g, < Q, and h(ng.) > 2}
Wy ={(n,q):n €S, g =min({Q} U{q: g > PT(n), h(ng) <2, and f(n, k) < Z})}

Wy = {(ngr, g) : (n,q;) € Wa, PT(n) < g < gqj, and f(ng, k+1) < Z}
W =W, uWs, W.=W,.

We now check that, in this case, W = W, U W_ forms a smooth-rough-divisor-partition
by showing that every integer n is contained in M, , for precisely one (a,q) € W. Fix an
integer n and factor n as n = pips---paw) with p1 < ps < -+ < por). By multiplying
together the smallest prime factors of n until the last time we obtain a divisor d in S,

i
d= d:d= o d .
oslfsaén){ JERE S}

=1

Now let r = P~ (n/d) > P*(d) be the smallest prime factor of n omitted from d. We proceed
with several cases.

First, if r = oo (i.e. n =4d) or r > @, then n € My, for the unique (d, ¢) € W5 whose first
element is d (and is clearly not in M, , for any (a,q) in W; or Wi.

Otherwise, if h(dr) > 2, then (dr,r) € Wy and n € My, ,, while the construction of Wy
and W precludes the possibility that n € M, , for any (a,q) in W5 or Wj.

This leaves the case that h(dr) < 2. Suppose r = gy is the kth prime number. The fact
that dr = dgy ¢ S means that it must be the case that f(dgy, k+ 1) < Z. Suppose first that
1 <r=gq,= PT(d). (So we have r? | n). By the construction of Wy, we have (d,q) € W,
for some ¢ > r, and so we find that (dr,r) € W5 and n € My, while n ¢ M, , for any other
(a,q) € W.

Finally, that brings us to the case that P*T(d) < r < Q. Since d € S, there is a unique
(d,q) € Wy whose first element is d. If r > ¢ then n € My, otherwise if r < ¢ then, as
before, since dr ¢ S, and h(dr) < 2 we have f(dr,r) < Z, so by the construction of W3 we
have (dr,r) € Ws.
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By taking the parameters Z = 27 and Q = qioo0000 = 15485863 we create a smooth-
rough-divisor-partition W, which we use in (22) and (21) to give both the lower and upper
bounds quoted in Theorem 2.2 after about 20000 hours of computation.”

We use a nearly identical construction to obtain a smooth-rough-divisor-partition W to
compute an upper bound for d(C), replacing only each occurrence of h(n) and f(n,k) in

the definitions of S, Wi, W5 and W3 by ¢(n) and f'(n, k) = #ﬁp <i) respectively. Then

L\ ()

taking Z = 27 and Q = gs0000 = 224737 in (21) gives the upper bound of Theorem 2.1.

7. LOWER BOUNDS FOR d(C)

While the method described above can be used to obtain lower bounds on the density of
abundant numbers using (22), the analogous method for covering numbers does not give a
lower bound for d(C). The analogous sum (the middle of the three sums in (24)) gives a
lower bound for the density of those integers n with ¢/(n) > 2, of which C is a subset.® It
may be the case that this density is the same as that of d(C), however this seems unlikely.

Instead, since the sequence of primitive covering numbers seems to be relatively sparse (at
least at first) we compute the lower bound by computing exactly the density of multiples of
known small primitive covering numbers.

Determining whether a given integer n is a covering number seems to be a computationally
intractable in general, and is likely to be N P-complete, since, as noted in [19] the more
general problem of determining whether a covering system exists with a fixed set of moduli
is NP-complete. The same remark applies for the problem of computing the function ¢(n).

We determine the complete list of small primitive covering numbers by the following
method. We treat integers n one at a time in increasing order using the following steps.

(1) We check whether n is divisible by any of the known, smaller primitive covering
numbers. If so, n is not primitive covering and we proceed to the next n.

(2) If o(n) < 2 then n is not a covering number and we proceed to the next n.

(3) We determine the Sun-almost-covering divisor ¢(n) which we use to compute ¢'(n).
Likewise, if ¢/(n) < 2 then n is not a covering number and we proceed to the next n.

(4) If E(Ln) is prime, we check whether n can be verified to be a covering number using

Corollary 4.8. If so, we add it to our list of primitive covering numbers and proceed
to the next n. (We know n is a primitive covering number from the check in step 1.)

(5) Finally, if the previous steps have not resolved whether n is a covering number, we
construct an integer (binary) program of boolean variables with constraints that are
satisfiable if and only if n is a covering number. We then ask the [12] MIP solver to
solve our model. The solver returns either a solution, corresponding to a covering
system, (and hence n is a primitive covering number) or it returns “infeasible” in
which case n is not a primitive covering number.

"While computing this level of precision required a large distributed computation, the method is able to
improve on the existing bounds very quickly. Taking Z = 2746 and Q = qio0000 = 104729 we recover the
previously known lower bound (2) and improve the upper bound to d(.A) < 0.247628 in under 10 seconds, if
tables of moments for gy (x) have been precomputed. Taking Z = 274, and Q = 100000 = 1299709 gives
us 6 digits of d(A), namely 0.24761951 < d(A) < 0.24761998 in just 11 CPU hours of computation time.

8The same parameters used to compute the upper bound for d(C) give the lower bound 0.103369 for the
density of numbers with ¢/(n) > 2. This may already exceed the true value of d(C), so another interpretation
of this value is as a lower bound for how small the upper bound for d(C) can be made using this method.
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We discuss further the logistics of step (5) in Appendix B. Step (5) is computationally
intensive, requiring in some cases several hours for a single value of n. Fortunately, we can
resolve most small values of n using steps (1)-(4), the smallest n which requires step (5) is
n = 7700 (which is not a covering number).

In this way we are able to identify all of the primitive covering numbers less than n =
773500 = 22x53x Tx13x17, the smallest number for which our MIP solver has not (yet) been
able to give an answer. With the exception of 773500, we determine all primitive covering
numbers less than 1000000, which are listed in Table 2. By computing exactly the density
of the multiples of the numbers in this table (except 773500) we obtain the lower bound
0.10323 < d(C).

APPENDIX A. STRONGER VERSIONS OF DELEGLISE’S MOMENT BOUNDS

As mentioned in Section 6, we numerically bound the quantities A,(z) by computed

values A,(x) > A,(x) which are obtained by calculations which closely follow those used
by Deléglise. We extend his calculations in order to allow for higher moments r and larger
values of y.

In particular, starting with (15), we bound the moment

=t LSty = T (14322

n<x P>y

where we have written

1 1\" 1 1 \"
Ppri = 1+__|_..._|__i — 1+_+"'+ﬂ _
b p p p

The following are Lemmas 6.3 and 6.4 respectively of [8].
Lemma A.1 (Deléglise). For every integer r and every prime p,

r__ r—1
Zp””ﬁig (1—1/19) 1—1—7"( 1 ) 41 .
P p 1-1/p p

i>0 -p

Lemma A.2 (Deléglise). For every integer r and every prime p > max(2r, 15) we have
3o et <31
>0 P p

Lemma A.3. For every integer r with 1 < r <5 x 107 we have

I1 (HZ%) < oxp () -

p>108 >0

Proof. We follow closely the proof of Lemma 6.5 of [8]. Set

u = H (1 + Z pp—é:l> .
p>108 is0 P
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Now, Inu < 1.31r Zp>108 1% by Lemma A.2. Thus, using computed values of Zp# =

0.45224742004106 . . ., we compute that

1
Y = <5.1616 x 107",

p>108

and so

u < exp (1.31 x 5.1616 x 107" x r) < exp (175 ) - O

10

We can now use this and Lemma A.1 to bound

r—1
< 1—1/p) —1 7“<_1> _
un:H(Hz%)@xp(lg%) (RS N A [

4 _ 2
P>y i=1 y<p<108 b P

For our computation, we precompute the values of 1, , for all y < @), the parameter defined
in Section 6 (which is always taken less than 10%), and each r = 2% for 0 < ¢ < 25.

We then compute A,(z), starting with (14) as

7 . 1 . Hy,2i — 1
Ay(x) = H (1 — E) oin {—in ("

p<y

The computation of gy(az) was performed with floating point arithemetic in C++ using
the MPFR library with 80 bits of precision and consistent rounding to ensure that every
operation was consistently rounded to produce an upper bound.

APPENDIX B. INTEGER PROGRAMMING

In Section 7 the final step of determining whether an integer n is a covering number (if
easier options have not been successful) is to set up an integer programming problem which
with constraints that are satisfiable if and only if n is a covering number.

We simplify the calculations substantially using Lemma 4.9. Let ¢ be the Sun-almost-
covering divisor of n, with n = ¢b, and ged(¢,b) = 1. Following the ideas used in the proof
of Theorem 4.11, if the divisors of n form a covering system we can assume, without loss
of generality, that the divisors of ¢ cover every residue modulo ¢ except 0 (mod ¢). So it
remains to cover only the m residues modulo n in this congruence class modulo ¢ using
divisors of n not coprime to b. By the same argument as that proof, we can now reduce
the question of determining whether n is a covering number to the problem of determining
whether it is possible to find a covering system C” in which each modulus is a divisor of b
(greater than 1) and each modulus occurs at most 7(¢) times. This is the question we now
resolve using integer programming.

For each divisor d|b, d > 1 we create d integer (binary) variables,

0<z4; <1 for0<i<d (25)
which will take on the value 1 when the residue class i (mod d) is covered using one of the
divisors of d. Since each divisor d can appear at most 7(¢) times we impose the constraint

d—1
Zxd,i < 7(¢) for each d|b, d > 1. (26)
=0
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We must also ensure that each residue modulo b is covered by this system. We check this
by imposing one constraint for each residue 7 modulo b, namely
Z‘Tdd'(mOd a9 > 1 foreach 0 < j <b. (27)

d|b
d>1

After creating the model described by (25), (26) and (27) with o(b) — 1 variables and with
o(b) — 1+ 7(b) + b constraints, we ask a MIP solver (in our case Gurobi) to solve the model.
If it returns a solution we can use that solution to construct a covering system using the
divisors of n and if it returns “infeasible” then we know that n is not a covering number.

For example, if this method were to be used to test whether n = 60 = 22 x 3 x 5 is
a covering number, we have the Sun-almost-covering divisor ¢ = ¢(60) = 4, b = 15. We
would have 23 variables (230, 31, %32, 50, L5, - - - s T15,14), & constraint 0 < z; ; < 1 for each
variable and the constraints

T30+ Ts0 + X150 > 1

T31+x51+T151 > 1
T30+ x31 +x32 <3

Ts50+ X51 + X520 + T53 + T54 <3
150 + T151 + Tis2 + 00 + X504 <3

x32 +T52 + T152 > 1
T30+ Ts3 +T153 > 1
T30 + T54 + T1514 > 1
In this case there are many solutions, including both x3y = 23, = 232 = 1 and all other

variables Z€ro, or rz = 32 = 50 = T5,1 = T153 = T159 — TL15,12 = 1, all others zero. Thus
60 is a covering number, however it isn’t a primitive covering number as it is divisible by 12.

APPENDIX C. TABLES

x | Primitive covering numbers up | Primitive covering numbers up | Pe(x)
to « found using Theorem 1.1 | to z found using Theorem 2.5

102 3 3 3
103 7 7 7
104 11 13 13
10° 19 35 45
108 25 58 94 or 95
1010 56 362
1020 214 6544
1030 542 67153
1040 949 473340
1059 1433 2592765

TABLE 1. Table of counts of primitive covering numbers and of the subsets of
the primitive covering numbers that can be found using Theorems 1.1 and 2.5.
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n Factors Determination n Factors Determination
12 22.3 Theorem 1.1 112112 24721113 MIP Solver
80 24.5 Theorem 1.1 117306 2.32.73.19 Theorem 2.5
90 2.32.5 Theorem 1.1 120042 2.3%.13-19 Corollary 4.8
210 2-3-5-7 Theorem 1.1 131274 2.3%.11-13-17 MIP Solver
280 23.5.7 Theorem 1.1 142002 2.32.73.23 Theorem 1.1
378 2.3%.7 Theorem 1.1 145314 2.3%.13-23 Theorem 2.5
448 26.7 Theorem 1.1 192500 22.5%.7.11 MIP Solver
1386 2.32.7-11 Theorem 2.5 208544 2°.73.19 Corollary 4.8
1650 2-3-52.11 Theorem 1.1 223074 2-38.17 Theorem 1.1
2200 23.52.11 Theorem 1.1 242250 2-3-5%.17-19 Corollary 4.8
2464 25.7.11 Theorem 2.5 252448 20.73.23 Theorem 1.1
5346 2.35.11 Theorem 1.1 272272 24.7.11-13-17 MIP Solver
9750 2.3.5%.13 Theorem 1.1 293250 2.3.5%.17.23 Corollary 4.8
11264 210. 11 Theorem 1.1 311168 27.11-13-17 MIP Solver
11466 2.32.72.13 Theorem 2.5 318500 22.5%.72.13 MIP Solver
13000 23.5%.13 Theorem 1.1 323000 23.5%.17-19 Corollary 4.8
14994 2.32.72.17 Theorem 2.5 369750 2-3.5%.17-29 Theorem 2.5
18954 2.3%.13 Theorem 1.1 385434 | 2-3%2-72.19-23 Corollary 4.8
20384 2°.72.13 Corollary 4.8 391000 23.5%.17.23 Corollary 4.8
23166 2.3%.11-13 Corollary 4.8 395250 2.3.5%.17-31 Theorem 2.5
26656 25.72.17 Theorem 2.5 423500 22.5%.7.112 MIP Solver
27846 2.-32.7-13-17 Theorem 2.5 431250 2-3.55.23 Theorem 1.1
30294 2.3%.11-17 Theorem 2.5 450846 2.3%.11%2.23 Corollary 4.8
31122 2.-32.7-13-19 Theorem 2.5 452608 2t . 1317 Corollary 4.8
33150 2.-3.52.13-17 Theorem 2.5 485982 2.32.72.19-29 Theorem 2.5
33858 2.3%.11-19 Theorem 2.5 493000 23.5%.17-29 Theorem 2.5
36608 28.11-13 Jones and White [20] || 505856 211.13.19 Corollary 4.8
37050 2.-3.5%2.13-19 Theorem 2.5 519498 2.32.72.19-31 Theorem 2.5
37674 2.32.7.13-23 Theorem 2.5 527000 23.5%.17-31 Theorem 2.5
44200 23.52.13.17 Corollary 4.8 568458 2.3*.112.29 Theorem 2.5
44850 2.3.5%.13-23 Theorem 2.5 575000 23.55.23 Theorem 1.1
49400 23.52.13-19 Theorem 2.5 612352 211.13.23 Theorem 2.5
49504 2°.7-13-17 Corollary 4.8 617526 | 2-32.7-13%2-29 Theorem 2.5
53248 212.13 Theorem 1.1 654500 | 22-5%.7-11-17 MIP Solver
53900 22.52.72.11 MIP Solver 660114 | 2-3%2.7-132.31 Theorem 2.5
55328 25.7-13-19 Corollary 4.8 685216 25.72.19.23 Corollary 4.8
59800 23.52.13.23 Theorem 2.5 731500 22.5%.7.11-19 MIP Solver
63750 2-3.5%.17 Theorem 1.1 735150 2-3-52.132.29 Theorem 2.5
66976 2°.7.13-23 Theorem 2.5 747954 2-39.19 Theorem 1.1
71250 2-3-5%.19 Theorem 1.1 773500 | 27 - 5% -7-13-17 | Unknown Status
72930 [2-3-5-11-13-17 MIP Solver 785850 2.3-52.13%2.31 Theorem 2.5
85000 23.5%.17 Theorem 1.1 863968 2°.72.19-29 Corollary 4.8
95000 23.5%.19 Theorem 1.1 885500 22.5%.7.11-23 MIP Solver
95744 29.11-17 Corollary 4.8 896610 | 2-3-5-112-13-19 MIP Solver
97240 | 23.5-11-13-17 MIP Solver 909568 28.11-17-19 MIP Solver
100100 | 22.52.7.11-13 MIP Solver 923552 25.72.19.31 Theorem 2.5
107008 29.11-19 Theorem 2.5 980200 23.52.132.29 Theorem 2.5
107406 2.3°.13-17 Corollary 4.8

TABLE 2. All primitive covering numbers (and candidates) up to one million,
and how this was determined. (The primitivity of those numbers listed as
Corollary 4.8 or MIP Solver was checked by noting that they weren’t divisible
by anything earlier in the list.) Note the status of 773500 is not known.
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