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Abstract. We consider the distribution of the largest prime divisor of the integers in the interval [2, x],
and investigate in particular the mode of this distribution, the prime number(s) which show up most often

in this list. In addition to giving an asymptotic formula for this mode as x tends to infinity, we look at the
set of those prime numbers which, for some value of x, occur most frequently as the largest prime divisor of

the integers in the interval [2, x]. We find that many prime numbers never have this property. We compare

the set of “popular primes,” those primes which are at some point the mode, to other interesting subsets
of the prime numbers. Finally, we apply the techniques developed to a similar problem which arises in the

analysis of factoring algorithms.

1. Introduction

Let P (n) denote the largest prime divisor of an integer n ≥ 2. The distribution of the values of this
function as n ranges over the interval [2, x] has been considered by several authors. Alladi and Erdős [2]
investigated the average order of P (n) (as well as the average order of the k-th largest prime factor) and
showed that

1

x

∑
n≤x

P (n) =
π2x

12 log x
+O

(
x

log2 x

)
. (1)

This fact was later shown by Kemeny [11] using different methods, and improved upon by De Koninck and
Ivić [5], who showed that there exist constants d1, d2 . . . such that for any m ≥ 1,

1

x

∑
n≤x

P (n) = x

(
d1

log x
+

d2

log2 x
+ · · ·+ dm

logm x
+O

(
1

logm+1 x

))
. (2)

uniformly in m. Naslund [13] worked out the values of the constants in this expression, in particular

dm =

m∑
j=0

(−1)jζ(j)(2)

j!2m+1−j . (3)

The median value, M(x), of P (n) as n ranges over the integers in [2, x] was considered by Selfridge

and Wunderlich [22] who noted that M(x) = x
1√
e

+o(1)
. The result itself is much older, however, and was

essentially Vinogradov’s trick for extending the usefulness of character sums. Naslund [14] shows that this
median value is given more accurately by

M(x) = e
γ−1√
e x

1√
e

(
1 +

c1
log x

+
c2

log2 x
+ · · ·+ cm

logm x
+Om

(
1

logm+1 x

))
(4)

where the ci are computable constants.
Note that the median value grows substantially slower than the mean value, which indicates that the

distribution is skewed strongly to the right. De Koninck [4] shows that a mode of this distribution (note
that the mode need not necessarily be unique), corresponding to a prime number which occurs with maximal
frequency as the largest prime divisor of the integers in [2, x], grows even slower still, slower than any power
of x. More precisely, he shows the mode is given by

e
√

1
2 log x(log log x+log log log x+O(1)) (5)

though in his result the O(1) term is incorrectly given as being o(1). In what follows, we will say that a prime
p is popular on the interval [2, x] if no prime occurs more frequently than p as the largest prime divisor of the
integers in that interval. While the asymptotic behaviors of the mean and median values of this distribution,
as in (2) and (4), are well understood, the relative error term in (5) is quite large. The primary goal of this
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paper is to improve (5) and in particular give the following asymptotic formula, which we prove in Section
4.

Theorem 1.1. If the prime p is popular on the interval [2, x] (i.e., p is a mode of the distribution of the
largest prime divisor function for that interval) then p satisfies

p = exp

{√
ν(x) log x+

1

4

(
1− ν(x)− 3

2ν(x)2 − 3ν(x) + 1

)}(
1 +O

((
log log x

log x

)1/4
))

where ν(x) is the solution to the implicitly defined equation

eν(x) = 1 +
√
ν(x) log x− ν(x)

and is given approximately by

ν(x) = 1
2 log log x+ 1

2 log log log x− 1
2 log 2 + o(1)

as x→∞.

Using this we also give an asymptotic expression for the frequency with which the mode value occurs,
improving the approximation given in [4, Theorem 1].

Theorem 1.2. If p is popular on the interval [2, x], then the number, Ψ(xp , p) of integers n ∈ [2, x] for which

P (n) = p is given asymptotically by

x√
2π log x

exp

{
−2
√
ν(x) log x+

∫ ν(x)

0

es−1

s
ds+

3ν(x)

2
+ γ +O

(
1

log log x

)}
. (6)

Every prime p ≤ x is the largest prime factor of at least one integer in [2, x], namely p itself. In [6]
De Koninck and Sweeney consider further the frequency with which prime numbers occur as the largest
prime divisor on the interval [2, x]. They note that for a fixed value of x there exists an initial interval
[2, f(x)] of primes, p on which the frequency with which p = P (n), monotonically increases at each prime,
an intermediate range, (f(x), g(x)) where the behavior is chaotic, and a final interval [g(x), x] on which it
monotonically decreases. They show that for sufficiently large x, f(x) ≤

√
log x and g(x) ≥

√
x. Clearly

the mode value lies somewhere in the intermediate interval. The chaotic behavior and the exact value of the
mode depends on the spacing and gaps between the primes near this peak value.

Somewhat surprisingly one finds that there are primes which are not popular on any interval [2, x], and
experimentally it appears that in fact most primes are not. We therefore define a prime to be a popular
prime if it is popular on an interval [2, x] for some value of x. In Section 5 we investigate further this subset
of the primes. Clearly there must be infinitely many popular primes. We are able to show that there is
also a positive proportion of prime numbers which are not popular. To do this we show that the average
prime spacing between popular primes cannot be too small. We prove a more general result which implies
the following bound on their spacing.

Theorem 1.3. Given any two sufficiently large consecutive primes, p < q, if the gap between them, q − p,
is less than 0.153 log p, then p is not a popular prime.

We then combine this with a consequence of the GPY sieve [7] which shows that a positive proportion of
prime gaps are smaller than that.

Corollary 1.4. A positive proportion of primes are not popular.

In Section 6 we present data on the prime numbers which, for some value of x ≤ 1015, appear most
frequently as the largest prime divisors of the integers in [2, x]. We compare these values to other subsets
of the prime numbers, in particular the “convex primes,” the set of those prime numbers numbers, pn,
which form the vertices of the boundary of the convex hull of the points (n, pn) in the plane, considered by
Pomerance [15] and recently by Tutaj [21]. Within the range of our computations the convex primes are a
subset of the popular primes.

Finally we apply the methods developed in this paper to another problem which turns out to be closely
related to ours, the analysis of the running time of factoring algorithms. A key step in several algorithms
for factoring integers (including Dixon’s random squares algorithm, the quadratic sieve and the number
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field sieve) requires generating a pseudorandom sequence of integers a1, a2, . . . until a subset of the ai’s has
product equal to a square. Pomerance [16] notes that in the (usually heuristic) analysis of such factoring
algorithms one assumes that the pseudo-random sequence a1, a2, . . . is close enough to random that we
can make predictions based on this assumption, and thus the analysis of this step of the algorithm can be
captured by the following question.

Pomerance’s Problem. Select positive integers a1, a2, . . . ≤ x independently at random (each integer
is chosen with probability 1/x), until some subsequence of the ai’s has product equal to a square. When
this occurs, we say that the sequence has a square dependence. What is the expected stopping time of this
process?

Pomerance [17] showed for any ε > 0 that as x → ∞ the probability that this stopping time lies in the
interval [

exp
{

(1− ε)
√

2 log x log log x
}
, exp

{
(1 + ε)

√
2 log x log log x

}]
tends to 1. Croot, Granville, Pemantle and Tetali [3] showed that the interval can be taken to be[

(
πe−γ

4
− ε) x

h(x)
, (e−γ + ε)

x

h(x)

]
with the same result, where h(x) is the maximum value of the function Ψ(x,y)

π(y) taken over y < x. (For

simplicity, they find y0 which maximizes ψ(x,y)
y , and then consider Ψ(x,y0)

π(y0) .) They give only the same crude

approximation
x

h(x)
= exp

{
(1 + o(1))

√
2 log x log log x

}
as Pomerance however. In Section 7 we analyze the values of y which maximize both Ψ(x,y)

y and Ψ(x,y)
π(y) , and

give the following asymptotic for the function h(x).

Theorem 1.5. For a given value of x, the value of h(x), the maximum value of Ψ(x,y)
π(y) for y < x is given

asymptotically by

h(x) =
x√

2π log x
exp

{
−2
√
ν(x) log x+

∫ ν(x)

0

es−1

s
ds+

3ν(x)

2
+ γ +O

(
1

log log x

)}
,

the same expression as (6).

2. Smooth numbers

These results rely on careful estimates for the counts of smooth numbers, those integers whose prime
factors are all less than some bound. In particular a number is called y-smooth if all of its prime factors
are at most y. We will denote by Ψ(x, y) the count of the y-smooth numbers up to x. We are specifically
interested in the count of the number of integers up to x whose largest prime factor is the prime p. This

count is given by Ψ
(
x
p , p
)

since each integer up to x whose largest prime divisor is p can be written uniquely

as p times a p-smooth number that is at most x/p.
The function Ψ(x, y) has been well studied over the course of the last century. From Hildebrand [10] we

know that for each ε > 0, x > 2 and exp
(
(log log x)5/3+ε

)
< y < x,

Ψ(x, y) = xρ(u)

(
1 +Oε

(
log(u+ 1)

log y

))
(7)

where

u =
log x

log y

and ρ(u), the Dickman rho function, is the continuous solution to the differential delay equation

uρ′(u) + ρ(u− 1) = 0 (8)
3



with the initial condition ρ(u) = 1, (0 ≤ u ≤ 1). It was shown by Alladi [1] that as u→∞,

ρ(u) =

(
1 +O

(
1

u

))√
ξ′(u)

2π
exp

{
γ − uξ(u) +

∫ ξ(u)

0

es − 1

s
ds

}
. (9)

Here γ is the Euler-Mascheroni constant and ξ(u) denotes the unique positive solution to the equation

eξ(u) = 1 + uξ(u) (10)

which is given approximately by

ξ(u) = log u+ log log u+O

(
log log u

log u

)
. (11)

It will be useful later to note that ∫ u

0

ξ(t)dt = uξ(u)−
∫ ξ(u)

0

es − 1

s
ds. (12)

Saias [18] gives an approximation for Ψ(x, y) which, while better than Hildebrand’s result, is somewhat
more cumbersome to work with. Defining

Λ(x, y) =

x
∫ x

0

ρ

(
log x− log t

log y

)
d
btc
t

x /∈ Z

lim
z→x−

Λ(z, y) x ∈ Z,

then the approximation

Ψ(x, y) = Λ(x, y)

(
1 +Oε

(
1

exp
(
(log y)3/5−ε

)))
holds in the same range as Hildebrand’s result. Assuming the Riemann Hypothesis, this can be improved to

Ψ(x, y) = Λ(x, y)

(
1 +Oε

(
log x

y1/2−ε

))
.

Saias also shows that the asymptotic expansion

Λ(x, y) = x

k∑
j=0

aj
ρ(j)(u)

(log y)j
+Ok,ε

(
x
ρ(k+1)(u)

(log y)k+1

)
(13)

where the aj are the coefficients for the Taylor series of (s − 1)ζ(s)/s around s = 1, holds uniformly for
x ≥ 2, (log x)1+ε < y ≤ x as long as

u− j
k + 1− j

≥ log log y

log y

for 0 ≤ j ≤ min(k, u). We will use extensively Saias’ expansion in the case k = 1. In particular, the constants
a0 and a1 are given by a0 = 1 and a1 = γ − 1 so that if we define

κ(x, y) = ρ(u) + (γ − 1)
ρ′(u)

log y

then, using [20, Section III.5 Corollary 8.3] that ρ′′(u) = O
(
log(u+ 1)2ρ(u)

)
we get from (13) that the

approximation

Ψ(x, y) = xκ(x, y)

(
1 +Oε

((
log(u+ 1)

log y

)2
))

(14)

holds in the same range as (7).
In order to make use of Saias’ improved approximation we will also require a better approximation of ρ(u).

Both Smida [19] and Xuan [23, Corollary 1] have given improved approximations in which the
(
1 +O

(
1
u

))
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is replaced by a series involving negative powers of u and ξ(u). Xuan shows that for any fixed integer N and
sufficiently large u,

ρ(u) =

√
ξ′(u)

2π
exp

{
γ − uξ(u) +

∫ ξ(u)

0

es−1

s
ds

}1 +

N∑
i=1

1

ui

∞∑
j=0

bi,j
ξ(u)j

+ON

(
1

uN+1

) (15)

where the bi,j are constants and the series is uniformly convergent. (Note that Xuan states his result using
a different function, 1/w2(u), in place of ξ′(u), but it can easily be rewritten in the form given above by
modifying the coefficients appearing in the asymptotic expansion.) We will only be using his result in the
case that N = 1. Smida’s work, which is done in greater generality for a family of differential difference
equations like Dickman’s function, shows that b1,0 = − 1

12 .
Finally, Hildebrand [9, Theorem 3] gives an upper bound for the number of smooth integers in short

intervals which we will find useful. Uniformly for x > y > 2, 1 ≤ z ≤ x we have

Ψ (x+ z, y)−Ψ(x, y) ≤
(

1 +O

(
1

log y

))
Ψ(x, y)y log(xy/z)

Ψ(xy/z, y) log y
. (16)

3. Dickman’s function

The approximation

ρ(u− 1)

ρ(u)
= uξ(u)

(
1 +O

(
1

u

))
(17)

is common in the literature. (See for example [20, Section III.5 equation 61].) We will need a slightly stronger
form obtained using the work of Smida and Xuan.

Lemma 3.1. For sufficiently large u and any v � 1 the function ρ(u) satisfies

ρ(u+ v)evξ(u)

ρ(u)
= 1− v

2u

(
1 +

vξ(u)

ξ(u)− 1
+

1

(ξ(u)− 1)
2

)
+O

(
1

u2

)
. (18)

In particular when v = −1,

ρ(u− 1)

ρ(u)
= uξ(u) +

1

2
+

1

2(ξ(u)− 1)2
+O

(
ξ(u)

u

)
. (19)

Proof. By implicit differentiation of the functional equation eξ(u) = 1 + uξ(u) we find that

ξ′(u) =
ξ(u)

uξ(u)− u+ 1
=

1

u

(
ξ(u)

ξ(u)− 1

)(
1 +O

(
1

uξ(u)

))
, (20)

that

ξ′′(u) =
2ξ′(u)− eξ(u)ξ′(u)2

uξ(u)− u+ 1

=
2ξ(u)

(uξ(u)− u+ 1)2
− uξ(u)3 + ξ(u)2

(uξ(u)− u+ 1)3
= − 1

u2

(
1 +O

(
1

ξ(u)

))
, (21)

and that ξ′′′(u) ∼ 2/u3. Also,

ξ′′(u)

ξ′(u)
=

2− eξ(u)ξ′(u)

ξ(u)− u+ 1
=

2

uξ(u)− u+ 1
− uξ(u)2 + ξ(u)

(uξ(u)− u+ 1)2

=
2

u

(
1

ξ(u)− 1

)
− 1

u

(
ξ(u)2

(ξ(u)− 1)
2

)
+O

(
1

u2ξ(u)

)

= − 1

u

(
1 +

1

(ξ(u)− 1)
2

)(
1 +O

(
1

uξ(u)

))
. (22)
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Now, using equation (15) with N = 1, along with (12) and the approximation∫ u+v

u

ξ(t)dt = vξ(u) +
v2ξ′(u)

2
+O (|ξ′′(u)|)

we find that

ρ(u+v) = ρ(u)

√
ξ′(u+ v)

ξ′(u)
exp

{
−
∫ u+v

u

ξ(t)dt

}(
1 + 1

u+v

∑∞
j=0

b1,j
ξ(u+v)j +O

(
1
u2

)
1 + 1

u

∑∞
j=0

b1,j
ξ(u)j +O

(
1
u2

) )

= ρ(u)

√
1+v

ξ′′(u)

ξ′(u)
+O

(
ξ′′′(u)

ξ′(u)

)
exp

{
−vξ(u)−v

2ξ′(u)

2
+O (|ξ′′(u)|)

}(
1+O

(
1

u2

))
= ρ(u)e−vξ(u)

(
1 +

vξ′′(u)

2ξ′(u)
− v2ξ′(u)

2
+O

(
1

u2

))
.

Here we have used the Taylor expansions for
√

1 + x and ex around x = 0, as well as the fact that
ξ(u)−1 − ξ(u+ v)−1 � 1

u , by the mean value theorem. Finally, using equations (20) and (22) we have

ρ(u+ v) = ρ(u)e−vξ(u)

(
1− v

2u

(
1 +

1

(ξ(u)− 1)
2

)
− v2

2u

(
ξ(u)

ξ(u)− 1

)
+O

(
1

u2

))

= ρ(u)e−vξ(u)

(
1− v

2u

(
1 +

vξ(u)

ξ(u)− 1
+

1

(ξ(u)− 1)
2

)
+O

(
1

u2

))
.

In the specific case v = −1, we have that eξ(u) = 1 + uξ(u), and so

ρ(u− 1) = ρ(u) (uξ(u) + 1)

(
1 +

1

2u

(
1− ξ(u)

ξ(u)− 1
+

1

(ξ(u)− 1)
2

)
+O

(
1

u2

))

= ρ(u)

(
uξ(u) + 1 +

ξ(u)

2

(
− 1

ξ(u)− 1
+

1

(ξ(u)− 1)
2

)
+O

(
ξ(u)

u

))

= ρ(u)

(
uξ(u) +

1

2
+

1

2(ξ(u)− 1)2
+O

(
ξ(u)

u

))
.

�

We can use Lemma 3.1 to obtain a good approximation for the derivative of ρ(u).

Lemma 3.2. For u ≥ 1 we have

ρ′(u) = −ρ(u)

(
ξ(u) +

1

2u

(
1 +

1

(ξ(u)− 1)2

)
+O

(
ξ(u)

u2

))
. (23)

Proof. This follows immediately from the differential delay equation for ρ(u) and (19). �

4. The most popular largest prime divisor

For x ≥ 2 we say that a prime p is popular on the interval [2, x] if no prime occurs more frequently
than p as the largest prime divisor of the integers in that interval. In the case of a tie we will say that
any prime which occurs a maximal number of times is popular. The following theorem, Theorem 1.1 in the
introduction, makes use of Saias’ approximation (14). In particular, Saias’ result shows that for each ε > 0,
x > 4, p ≥ 2 and

exp
(

(log log x)5/3+ε
)
< p <

x

p
,

we have that

ψ

(
x

p
, p

)
=
x

p
κ

(
x

p
, p

)(
1 +Oε

((
log log x

log p

)2
))

.
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Theorem 4.1. If the prime p is popular on the interval [2, x] then p satisfies

p = exp

{√
ν(x) log x+

1

4

(
1− ν(x)− 3

2ν(x)2 − 3ν(x) + 1

)}(
1 +O

((
log log x

log x

)1/4
))

(24)

where ν(x) is the solution to the implicitly defined equation ν(x) = ξ
(√

log x
ν(x) − 1

)
and is given approximately

by
ν(x) = 1

2 log log x+ 1
2 log log log x− 1

2 log 2 + o(1) (25)

as x→∞.

Proof. By using the functional equation (10) for ξ(u), we can rewrite the equation for ν(x) as the solution
to

eν(x) = 1 +
√
ν(x) log x− ν(x) (26)

which can be approximated using standard asymptotic techniques to yield the rough approximation above.
The proof proceeds in three steps, each giving better bounds for any prime that is popular on the interval

[2, x]. We show first that as x→∞, if p is popular on [2, x], then p satisfies

exp

{(
1

4
+ o(1)

)√
log x

ν(x)

}
< p < exp

{
(2 + o(1))

√
ν(x) log x

}
. (27)

Next, we show that

p = exp
{√

ν(x) log x+O(log log x)
}
, (28)

and finally that the approximation (24) holds.

To see that Ψ
(
x
p , p
)

is maximized near (27), we first set

P0 = exp
{√

ν(x) log x
}

and let

u0 =
log x

logP0
− 1 =

√
log x

ν(x)
− 1.

If p′ is the greatest prime less than or equal to P0 then Ψ
(
x
p′ , p

′
)
≥ Ψ

(
x
P0
, P0

)
and hence if Ψ

(
x
q , q
)
<

Ψ
(
x
P0
, P0

)
, for some prime q, then q is not popular on [2, x].

Note that by definition ν(x) = ξ(u0). We then compute, using (7) as well as (9) that

Ψ

(
x

P0
, P0

)
=

x

P0
ρ(u0)

(
1 +O

(
log u0

logP0

))
=

x

P0

√
ξ′(u0)

2π
exp

{
γ − u0ξ(u0) +

∫ ξ(u0)

0

es − 1

s
ds

}(
1 +O

(
1

u0

))

� x
√
u0

exp

{
−

(√
log x

ν(x)
− 1

)
ν(x)−

√
ν(x) log x

}
= x exp

{
−2
√
ν(x) log x+ ν(x)− 1

2 log u0

}
≥ x exp

{
−2
√
ν(x) log x

}
(29)

for sufficiently large x. Using the elementary estimate Ψ (x, y) � x exp
{
− log x

2 log y

}
, x ≥ y ≥ 2, (see [20,

Section III.5 Theorem 1]) we see that for any ε > 0 and sufficiently large x that if q < exp

{ √
log x

(4+ε)
√
ν(x)

}
,

then

Ψ

(
x

q
, q

)
� x

q
exp

{
− log x

2 log q

}
< x exp

{
−(2 + ε

2 )
√
ν(x) log x

}
7



which is asymptotically less than (29). Similarly, if q > exp
{

(2 + ε)
√
ν(x) log x

}
, then trivially

Ψ

(
x

q
, q

)
<
x

q
< x exp

{
−(2 + ε)

√
ν(x) log x

}
, (30)

which proves (27). We can thus assume without loss of generality in the following that a prime popular on
[2, x] must lie in the range where Hildebrand’s approximation (7) holds, which we now use along with (9)
and (12) to prove (28).

Suppose q is a prime lying in the interval (27), also satisfying

| logP0 − log q| > Aν(x) (31)

for a positive absolute constant A to be specified later. We will show that for sufficiently large x, Ψ
(
x
P0
, P0

)
>

Ψ
(
x
q , q
)

which means that some other prime occurs more frequently than q as the largest prime divisor on

the interval [2, x], which will then imply (28) because ν(x) = O(log log x).

Letting uq = log x
log q − 1 and, as before, u0 = log x

logP0
− 1 =

√
log x
ν(x) − 1, we have, using (7), (9) and (12) that

Ψ
(
x
P0
, P0

)
Ψ
(
x
q , q
) =

x
P0
ρ
(

log x
logP0

− 1
)

x
q ρ
(

log x
log q − 1

) (
1 +O

(
log log x

logP0
+

log log x

log q

))

=
q

P0

√
ξ′(u0)

ξ′(uq)
exp

{∫ uq

u0

ξ(t)dt

}(
1 +O

(
1

u0
+

1

uq

)
+O

(
(log log x)3/2

(log x)1/2

))
. (32)

First, if q < P0 then u0 < uq and so, since ξ′(u) > 0 and ξ′′(u) < 0 asymptotically, we know that ξ′(u0)
ξ′(uq)

> 1,

and
∫ uq
u0
ξ(t)dt > (uq − u0)ξ(u0). Using these inequalities we see that the main term in (32) is greater than

q

P0
exp {(uq − u0)ξ(u0)} = exp

{
log q − logP0 +

(
log x

log q
− log x

logP0

)
ξ(u0)

}
. (33)

Because ξ(u0) = ξ
(

log x
logP0

− 1
)

= ν(x) = log2 P0

log x , we can rewrite the exponent above as

log q − logP0 +
log2 P0

log q
− logP0. (34)

Differentiating this with respect to log q gives 1 − log2 P0

log2 q
, which is negative for all q < P0, and so, as a

function of q, (34) is strictly decreasing for all q < P0. Thus, in our situation, (33) is minimized when
logP0 − log q = Aν(x) in which case it equals

exp

{
−Aν(x) + logP0

(
logP0

logP0 −Aν(x)
− 1

)}
= exp

{
A2ν(x)2

logP0 −Aν(x)

}
.

This is not only greater than 1, but can be made strictly larger than the error term of (32) by choosing the
constant A to be sufficiently large. So we can conclude that the ratio there is strictly greater than 1, at
least for sufficiently large x. Therefore some other prime occurs more frequently than q as the largest prime
divisor on [2, x].

If instead, q > P0, we have uq < u0 which means ξ′(u0)
ξ′(uq)

< 1, and so a little more care is required. Let

δ = u0 − uq. Because we are assuming that q satisfies (31) we will have (taking the constant A there to be
greater than 2) that

δ = u0 − uq =
log x

logP0
− log x

log q
>

log x

logP0
− log x

logP0 +Aν(x)
>

2ν(x) log x

log2 P0

= 2

for sufficiently large x. Also, from (27), we may assume that for any fixed 0 < ε < 1
2 and sufficiently large

x, log q < (2 + ε) logP0 and so

δ =
log x

logP0
− log x

log q
< u0

(
1− 1

2 + ε

)
<

3u0

5
. (35)
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In this case we can use (20) to approximate

ξ′(u0)

ξ′(uq)
=

(
ξ(u0)

ξ(u0 − δ)

)(
(u0 − δ)ξ(u0 − δ)− u0 + δ + 1

u0ξ(u0)− u0 + 1

)
=

(
ξ(u0)

ξ(u0) +O (δξ′(u0))

)(
1− δ (ξ(u0) +O(1))

u0ξ(u0)− u0 + 1
+O

(
1

u0ξ(u0)

))
= 1− δ

u0

(
1 +O

(
1

ξ(u0)

))
.

If we now use the somewhat more precise approximation∫ uq

u0

ξ(t)dt > −(u0 − uq)ξ(u0) +
1

2
(u0 − uq)2ξ′(u0),

(which holds since ξ′′(u) < 0 asymptotically) we have that the main term of (32) is greater than

q

P0

√
ξ′(u0)

ξ′(uq)
exp

{
(uq − u0)ξ(u0) +

1

2
(u0 − uq)2ξ′(u0)

}
. (36)

We now consider the term

√
ξ′(u0)

ξ′(uq)
exp

{
1

2
(u0 − uq)2ξ′(u0)

}

=

√
1− δ

u0

(
1 +O

(
1

ξ(u0)

))
exp

{
δ2

2u0

(
1 +O

(
1

ξ(u0)

))}
, (37)

using (20). Using (35) we see that when δ >
√
u0 this expression is greater than

√
2e
5 > 1 for sufficiently

large x. If δ ≤ √u0, then we can rewrite (37) as

exp

{
1
2 log

(
1− δ

u0

)
+

δ2

2u0

(
1 +O

(
1

ξ(u0)

))}
= exp

{
δ2 − δ

2u0

(
1 +O

(
1

ξ(u0)

))}
, (38)

which is greater than 1 for sufficiently large x since δ > 2. Since this term (37) can now be ignored in
inequality (36) we are left with the same inequality (33) as in the first case, and essentially the same analysis
shows that the ratio is again greater than 1. This proves equation (28).

In order to prove the theorem, we will now need to use the more precise approximation (14). In particular

we have, using that u = log x
log p − 1, Lemma 3.2, and that p is in the interval described in (27),

Ψ

(
x

p
, p

)
=
x

p
κ

(
x

p
, p

)(
1 +O

((
log log x

log p

)2
))

=
x

p

(
ρ (u) + (γ − 1)

ρ′ (u)

log p

)(
1 +O

((
log log x

log p

)2
))

=
x

p
ρ(u)

(
1 +

1− γ
log p

ξ(u) +O

(
1

u2

))
. (39)

Let c be a parameter,

s = exp
{√

ν(x) log x+ cν(x)
}
, (40)

and us = log x
log s − 1.

In the following we will optimize the value of c as a function of x, however, from (31), we can assume
without loss of generality that |c| ≤ A, the absolute constant chosen above. In particular, we would like to

9



choose c so as to maximize the ratio

Ψ
(
x
s , s
)

Ψ
(
x
P0
, P0

) =

x
s ρ(us)

(
1 + 1−γ

log sξ(us)
)

x
P0
ρ(u0)

(
1 + 1−γ

logP0
ξ(u0)

) (1 +O

(
1

u2
0

))

= e−cν(x)

ρ(us)

(
1 + 1−γ√

ν(x) log x+cν(x)
ξ(us)

)
ρ(u0)

(
1 + 1−γ√

ν(x) log x
ξ(u0)

) (
1 +O

(
1

u2
0

))
. (41)

Now, since
√

ν(x)
log x = 1

u0+1 , we have that

us − u0 =
log x

log s
− log x

logP0
=

log x√
ν(x) log x+ cν(x)

− log x√
ν(x) log x

= −c+ c2

√
ν(x)

log x
+O

(
c3

u2
0

)
= −c+

c2

u0 + 1
+O

(
c3

u2
0

)
(42)

and so, using Lemma 3.1, and the fact that ν(x) = ξ(u0),

ρ(us)

ρ(u0)
= exp

{
ν(x)

(
c− c2

u0+1
+O

(
c3

u2
0

))}(
1+

c

2u0

(
1− cν(x)

ν(x)−1
+

1

(ν(x)−1)2

)
+O

(
1

u2
0

))
= exp

{
cν(x)− c2

(
ν(x)

u0+1
+

ν(x)

2u0(ν(x)−1)

)
+

c

2u0

(
1+

1

(ν(x)−1)2

)
+O

(
c3ν(x)+1

u2
0

)}
. (43)

Also, we see that the final term of (41) can be ignored since

1 + 1−γ√
ν(x) log x+cν(x)

ξ(us)

1 + 1−γ√
ν(x) log x

ξ(u0)
= 1 +

1−γ√
ν(x) log x+cν(x)

ξ(us)− 1−γ√
ν(x) log x

ξ(u0)(
1 + 1−γ√

ν(x) log x
ξ(u0)

)

= 1 +

1−γ√
ν(x) log x

(ξ(us)− ξ(u0)) +O
(
ξ(us)
log x

)
(

1 + 1−γ√
ν(x) log x

ξ(u0)

)

= 1 +

1−γ√
ν(x) log x

ξ′(u0) (us − u0) +O
(

1
u2
0

)
(

1 + 1−γ√
ν(x) log x

ξ(u0)

)
= 1 +O

(
1

u2
0

)
. (44)

Using (43) and (44) in the ratio (41) we have that

Ψ
(
x
s , s
)

Ψ
(
x
P0
, P0

)
= exp

{
−c2ν(x)

(
1

u0+1
+

1

2u0(ν(x)−1)

)
+

c

2u0

(
1 +

1

(ν(x)−1)2

)
+O

(
c3ν(x)+1

u2
0

)}
, (45)
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and so maximizing this ratio is equivalent to maximizing the polynomial expression in c appearing in the

exponent. After rescaling by dividing out a factor of ν(x)
(

1
u0+1 + 1

2u0(ν(x)−1)

)
this expression is

−c2 +
c

2ν(x)

(
1 + 1

(ν(x)−1)2

u0

u0+1 + 1
2(ν(x)−1)

)
+O

(
c3

u0
+

1

ν(x)u0

)
(46)

which is maximized by some c satisfying

c =
1

4ν(x)

(
1 + 1

(ν(x)−1)2

u0

u0+1 + 1
2(ν(x)−1)

)
+O

(
c3/2
√
u0

+
1√

ν(x)u0

)

=
1

2ν(x)

(
ν(x)2 − 2ν(x) + 2

2ν(x)2 − 3ν(x)1 + 1

)
+O

(
1√

ν(x)u0

)

=
1

4ν(x)

(
1− ν(x)− 3

2ν(x)2 − 3ν(x) + 1

)
+O

(
1√

ν(x)u0

)
. (47)

Using this expression for c in (40), we see that the ratio (41) is maximized when s satisfies the expression
given in (24). �

We can use this result to give an asymptotic for the number of times that a prime which is popular on
[2, x] appears as the largest prime divisor of an integer on that interval, which we denote by C(x), thus giving
the height of the peak of the distribution of P (n) on the interval [2, x]. (Note that if multiple primes are
popular on [2, x], they occur the same number of times on that interval, so the function C(x) is well defined
for all x.) This theorem is Theorem 1.2 in the introduction.

Theorem 4.2. If p is popular on the interval [2, x], then C(x), the count of integers n ∈ [2, x] for which
P (n) = p, is given asymptotically by

C(x) =
x√

2π log x
exp

{
−2
√
ν(x) log x+

∫ ν(x)

0

es−1

s
ds+

3ν(x)

2
+ γ +O

(
1

ν(x)

)}
. (48)

Proof. We know from the above theorem that if p is popular on [2, x] then

p = exp

{√
ν(x) log x+

1

4
+O

(
1

ν(x)

)}
. (49)

Using (7),

Ψ

(
x

p
, p

)
=
x

p
ρ(u)

(
1 +O

(
log(1 + u)

log p

))
, (50)

where

u =
log x

log p
− 1 =

log x√
ν(x) log x+ 1

4 +O
(

1
ν(x)

) − 1

=

√
log x

ν(x)
− 1− 1

4ν(x)
+O

(
1

ν(x)2

)
. (51)

Now,

ξ(u) = ξ

(√
log x

ν(x)
− 1 +O

(
1

ν(x)

))

= ξ

(√
log x

ν(x)
− 1

)
+O

ξ′
(√

log x
ν(x) − 1

)
ν(x)


= ν(x) +O

(
1√

ν(x) log x

)
, (52)
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so, using (9), along with (20) we see that

ρ(u) =

(
1 +O

(
1

u

))√
ξ′(u)

2π
exp

{
γ − uξ(u) +

∫ ξ(u)

0

es − 1

s
ds

}

=

(
1 +O

(
1

ν(x)

))√
1

2πu
exp

{
γ − uν(x) +

∫ ν(x)

0

es − 1

s
ds+O

(
eν(x) − 1

ν(x)
√
ν(x) log x

)}

=
1√
2π

(
ν(x)

log x

) 1
4

exp

{
γ −

√
ν(x) log x+ ν(x) +

1

4
+

∫ ν(x)

0

es−1

s
ds+O

(
1

ν(x)

)}
. (53)

Combining this with (49) and (50) we have that

Ψ
(
x
p , p
)

=
x√

2π log x
exp

{
−2
√
ν(x) log x+

∫ ν(x)

0

es−1

s
ds+

3ν(x)

2
+ γ +O

(
1

ν(x)

)}
,

where we have also used (26) to see that eν(x)/2 = (ν(x) log x)1/4 +O
(

ν(x)3/4

(log x)1/4

)
. �

Note that, asymptotically,∫ ν(x)

0

es − 1

s
ds =

eν(x)

ν(x)
+O

(
eν(x)

ν(x)2

)
=

√
log x

ν(x)
+O

(√
log x

ν(x)

)
,

and so the expression in (48) is given approximately by

x exp
{
−
√

2 log x (log log x+ log log log x− log 2 + o(1))
}

(54)

which corrects slightly the estimate given in [4, Theorem 1].

5. Popular primes

Having seen that the value of any prime which is popular on the interval [2, x] tends, slowly, to infinity,
one might expect that every prime number is popular on some such interval. This turns out not to be the
case. We define a popular prime to be a prime number which is popular on some such interval [2, x].

In what follows we will see that not only are there prime numbers which are not popular, but in fact there
is a positive proportion of primes which are not popular. First however, we use Theorem 4.1 to give a lower
bound for their count.

Corollary 5.1. There exists an absolute positive constant C such that the count of the popular primes up

to x, for x > 10, is at least C log3/2 x√
log log x

.

Proof. Theorem 4.1 implies that there exists an absolute constant C ′ such that for any popular prime, p,
popular on the interval [2, x′], there exists another popular prime in the interval(

p, p

(
1 + C ′

((
log log x′

log x′

)1/4
))]

. (55)

Setting y = p we have log y =
√

log x′ log log x′ +O (1), and so we see that for a suitably large choice of C ′′

and any y there is a popular prime in the interval(
y, y

(
1 + C ′′

√
log log y

log y

)]
. (56)

If we restrict to counting popular primes appearing in [x1/2, x] in intervals of the form (56) where y is greater
than x1/2, then we may assume that

1 + C ′′

√
log log y

log y
≥ 1 + C ′′′

√
log log x

log x
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for yet another constant C ′′′. The number of non-overlapping intervals of the form
(
y, y

(
1 + C ′′′

√
log log x

log x

)]
between x1/2 and x is

1
2 log x

log
(

1 + C ′′′
√

log log x
log x

) � log3/2 x√
log log x

(57)

and the result follows. �

Before we can prove an upper bound for the distribution of the popular primes, we need first a version of
the Buchstab identity for the function Ψ(x, y) defined earlier.

Lemma 5.2. Let pn denote the nth prime number. For any k ≥ 1,

Ψ

(
x

pn+k
, pn+k

)
= Ψ

(
x

pn+k
, pn

)
+

k∑
i=1

Ψ

(
x

pn+kpn+i
, pn+i

)
. (58)

Proof. The left hand side, Ψ
(

x
pn+k

, pn+k

)
counts those integers at most x whose largest prime factor is

pn+k. Taking such an integer m, and dividing out a factor of pn+k we obtain an integer, m
pn+k

, at most x
pn+k

whose largest prime factor is either less than or equal to pn, in which case m is counted by Ψ
(

x
pn+k

, pn

)
, or

its largest prime factor is pn+i for some 1 ≤ i ≤ k, in which case m is counted by Ψ
(

x
pn+kpn+i

, pn+i

)
. �

We can use this lemma to show that the average prime spacing between popular primes cannot be too
small.

Theorem 5.3. If the primes pn and pn+k are any two popular primes satisfying

pn+k − pn = O

(
pn

log pn

)
, (59)

then the average prime gap between these primes must satisfy

pn+k − pn
k

≥
(

1 +O

(
log log pn

log pn

))
ρ(2− α) log pn

2− α
, (60)

where α = log(pn+k−pn)
log pn

.

Proof. Suppose that pn and pn+k, k > 0 are any two popular primes satisfying (59) and let α = log(pn+k−pn)
log pn

.

Because both pn and pn+k are popular, there exist integers xn and xn+k such that pn is popular on the
interval [2, xn], and likewise pn+k is popular on [2, xn+k].

Now, as x increases, the function Ψ
(
x
p , p
)

is nondecreasing, in fact, as x increases through the integers,

the difference Ψ
(
x+1
p , p

)
−Ψ

(
x
p , p
)

is either 0 or 1. So, in the case that xn+k ≥ xn, we have that

Ψ

(
xn
pn+k

, pn+k

)
≤ Ψ

(
xn
pn
, pn

)
≤ Ψ

(
xn+k

pn
, pn

)
≤ Ψ

(
xn+k

pn+k
, pn+k

)
. (61)

Thus, we see that as x increases from xn to xn+k, there must be an intermediate integer x′ between xn+k

and xn for which

Ψ

(
x′

pn+k
, pn+k

)
= Ψ

(
x′

pn
, pn

)
. (62)

Note that it need not necessarily be the case that xn+k ≥ xn, however the case that xn+k < xn is essentially
identical and we again find an integer x′ between these values satisfying (62).

By Theorem 4.1 we know that both

log pn =
√
ν(xn) log xn +

1

4
+O

(
1

ν(xn)

)
and

log pn+k =
√
ν(xn+k) log xn+k +

1

4
+O

(
1

ν(xn+k)

)
.
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Since log pn+k − log pn = O
(

1
log pn

)
and x′ lies between xn and xn+k we must have that

log pn =
√
ν(x′) log x′ +

1

4
+O

(
1

ν(x′)

)
. (63)

Set u0 = log x′

log pn
−1. Using Equation 62, Lemma 5.2 and the approximation that Ψ(x, y) =

(
1 +O

(
1
u

))
xρ(u)

we can write

Ψ

(
x′

pn
, pn

)
−Ψ

(
x′

pn+k
, pn

)
=

k∑
i=1

Ψ

(
x′

pn+kpn+i
, pn+i

)

=

(
1 +O

(
1

u0

)) k∑
i=1

x′

pn+ipn+k
ρ

(
log x− log pn+k − pn+i

log pn+i

)
. (64)

Using Lemma 3.1,

ρ

(
log x′ − log pn+k − log pn+i

log pn+i

)
= ρ

 log x′ − 2 log pn +O
(

1
log pn

)
log pn

(
1 +O

(
1

log2 pn

))


= ρ

(
(u0 − 1)

(
1 +O

(
1

log2 pn

)))
=

(
1 +O

(
u0 log u0

log2 pn

))
ρ(u0 − 1)

=

(
1 +O

(
1

log pn

))
ρ(u0 − 1). (65)

Since
k∑
i=1

1

pn+i
=

k∑
i=1

1

pn +O
(

pn
log pn

) =
k

pn

(
1 +O

(
1

log pn

))
, (66)

we have that

Ψ

(
x′

pn
, pn

)
−Ψ

(
x′

pn+k
, pn

)
=

(
1 +O

(
1

u0

))
x′k

pnpn+k
ρ(u0 − 1). (67)

On the other hand, using Hildebrand’s upper bound for the count of smooth numbers in short intervals

with z = x′(pn+k−pn)
pnpn+k

=
x′pα−1

n

pn+k
we have that

Ψ

(
x′

pn
, pn

)
−Ψ

(
x′

pn+k
, pn

)
= Ψ

(
x′

pn+k
+ z, pn

)
−Ψ

(
x′

pn+k
, pn

)

≤
(

1 +O

(
1

log pn+k

)) Ψ
(

x′

pn+k
, pn

)
pn log

(
x′pn
zpn+k

)
Ψ
(
x′pn
zpn+k

, pn

)
log pn

=

(
1 +O

(
1

u0

)) x′pn
pn+k

ρ
(

log x′−log pn+k

log pn

)(
log x′ − log z +O

(
1

log pn

))
x′pn
zpn+k

ρ
(

log x′+log pn−log pn+k−log z
log pn

)
log pn

=

(
1 +O

(
1

u0

)) zρ (u0)
(

(2− α) log pn +O
(

1
log pn

))
ρ

(
(2−α) log pn+O( 1

log pn
)

log pn

)
log pn

=

(
1 +O

(
1

u0

))
(2− α)ρ (u0)x′(pn+k − pn)

ρ (2− α) pnpn+k
. (68)
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Using (20) to see that

ξ(u0) = ξ

(
log x′

log pn
− 1

)
= ξ

(
log x′√

ν(x′) log x′ +O(1)
− 1

)

= ξ

(√
log x′

ν(x′)
− 1 +O

(
1

ν(x′)

))

= ν(x′) +O

(
ξ′(u0)

ν(x′)

)
= ν(x′) +O

(
1

log pn

)
, (69)

and, from the functional equation (26) for ν(x), that

ν(x′) = log
(

1 +
√
ν(x′) log x′ − ν(x′)

)
= log (log pn − ν(x′) +O(1)))

= log log pn + o(1) (70)

we can conclude, by combining (67) and (68), and using (17) that

pn+k − pn
k

≥
(
ρ(2− α)

2− α
+O

(
1

u0

))
ρ(u− 1)

ρ(u0)

=

(
ρ(2− α)

2− α
+O

(
1

u0

))
u0ξ(u0)

=

(
ρ(2− α)

2− α

)
ξ(u0) log x′√
ν(x′) log x′

+O(ξ(u0))

=

(
1 +O

(
log log pn

log pn

))
ρ(2− α) log pn

2− α
. (71)

�

As a corollary, we see that for any sufficiently large pair of twin primes, or consecutive primes with any
fixed gap, the smaller of the pair will never be a popular prime. In fact, approximating ρ(2)/2 = 0.153 . . .
we have the following stronger result, which is Theorem 1 in the introduction.

Corollary 5.4. Given any two sufficiently large consecutive primes, p < q, if the gap between them, q − p,
is less than 0.153 log p, then p is not a popular prime.

Goldston, Pintz and Yıldırım [7] have shown that for any fixed η, there is a positive proportion of prime
numbers, p, which are followed by a gap less than η log p, which means we can conclude the following,
Corollary 1.4 from the introduction, as well.

Corollary 5.5. A positive proportion of the prime numbers are not popular.

Note that if we assume that the smooth numbers are regularly distributed in all of the short intervals
that we are concerned with in the proof of Theorem 5.3 we can do much better. Assuming, as is widely
conjectured, that

Ψ(x+ z, y)−Ψ(x, y) ∼ z

x
Ψ(x, y) (72)

for y ∼ exp
(√

ν(x) log x+ 1
4

)
and z > x/y2, we could show, by the method of Theorem 5.3, that the average

gap between any two popular primes p and q, p < q, must be asymptotically equal to log q, and thus that
the popular primes have relative density 0 among the primes.

6. Computations and the convex primes

Compiling a list of the popular primes is computationally difficult, as it requires counting all of the largest
prime divisors of integers up to relatively large values of x compared to the popular primes themselves. The
first few popular primes (popular on some interval [2, x] for some x ≤ 1015) and the integer x for which they
were first popular on the interval [2, x] are given in the table below. Note that thus far no prime has been a
popular prime without being the uniquely popular prime on some such interval. Further, the table gives the
count of the number of times the prime occurs as the largest prime divisor of an integer in the interval [2, x].
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Primes popular on some interval [2, x] for x ≤ 1015

Popular

Prime

First popular

on [2, x]

First uniquely

popular

Last popular

on [2, z] C(x) C(z)

2 2 2 17 1 4
3 3 12 119 1 14
5 45 80 279 8 25

7 70 196 1858 10 77
13 1456 1638 5471 67 151
19 4845 4864 29301 140 428

23 20332 22425 53474 344 616
31 46345 46500 117303 563 1005
43 106812 109779 220523 947 1517

47 153032 158625 611374 1197 2902
73 592760 603564 2642391 2846 7664
83 2484190 2552416 2672025 7357 7722
109 2620033 2620142 2952463 7621 8284

113 2623860 2627250 41192601 7629 48380
199 41163150 41163747 237611044 48357 161644
283 237321819 237398795 1967277194 161507 698074

467 1966462280 1966466950 13692930957 697875 2761234
661 13690728506 13690729828 64358549949 2760913 8357693
773 64322151699 64322158656 79880100420 8354317 9758410

887 79838726306 79838739611 220369251374 9754751 20285553
1109 220355977754 220355987735 232880841877 20284680 21123128
1129 232268764689 232268774850 618765808209 21082412 43031555
1327 618745965579 618745972214 1882062587041 43030537 96835113
1627 1882062393429 1882062476406 9607847299025 96835105 318539488
2143 9607711921430 9607713772982 19364476224949 318536223 534261087

2399 19364051434020 19364051829855 26396066576762 534252383 672081919
2477 26393150922356 26393150937218 37636861534247 672026918 873949289
2803 37636607775855 37636607806688 114519204438979 873944930 1997008416

2861 114514665136326 114514665167797 173975018331581 1996949860 2720040151
2971 173974642506024 173974642809066 228013888964263 2720035791 3321778833
3739 228013323182523 228013323978930 259777078505983 3321772681 3663025425

3931 259772852488365 259772858868378 284734190312531 3662980704 3924572413
3947 284600479332862 284600479573629 644744279642231 3923186891 7241174991
4297 644741545074402 644741545246282 > 1015 7241151976 > 10065265091

Note that the ranges of popularity for 73, 83, 109 and 113 all overlap, and in fact all four are popular on
the interval [2, 2626355], each occurring 7634 times.

Thus far, the data for the popular primes appear to be related to two subsets of the prime numbers
studied by Pomerance [15] and Tutaj [21] and also discussed in Guy’s book of unsolved problems in number
theory [8, Problem A14]. The first set, the “convex primes,” is the set of those prime numbers numbers, pn,
which form the vertices of the boundary of the convex hull of the points (n, pn) in the plane. The second
set, the “midpoint convex primes,” are those prime numbers pn which satisfy the inequality

2pn < pn−i + pn+i for all positive i < n.

The first set is clearly a subset of the second, and Pomerance uses this fact to show that there are infinitely
many primes in the second set. Using the best known error term for the prime number theorem, Pomerance
claims that there are at least exp(c(log x)3/5) convex primes up to x for some constant c. Assuming the

Riemann hypothesis gives at least c′x1/4/ log3/2 x convex primes.
The values of the popular primes computed above are a superset of the convex primes: all of the convex

primes less than 5000 are also popular. Furthermore, all of those primes, pn, where the point (n, pn) lies on
the boundary of the convex hull but is not a vertex point of it (namely 5, 13, 23, 31 and 43) are popular as
well. The popular primes 83, 109, 773, 1109, 2143, 2399, 2477, 2861, 2971, 3739 and 3931 correspond to points
in the interior of the convex hull, however.

Also, the popular primes computed thus far are nearly a subset of the midpoint convex primes. All of the
popular primes except 773 are also midpoint convex. Many of the midpoint convex primes are not popular,
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however. Specifically all of the primes

293, 313, 317, 463, 503, 509, 523, 619, 683, 691, 1063, 1069, 1303, 1307, 1321, 1613, 1621,

1637, 1669, 1789, 2161, 2383, 2393, 2731, 2753, 3643, 3701, 3923, 4027, 4139, 4261, 4273, 4289

are midpoint convex, but not popular.
Both convex primes and popular primes are more likely to be found after a run of densely packed primes,

and prior to a larger than average gap betwen primes, which partially justifies the connection. If one assumes
that the convex primes continue to be a subset of the popular primes, then we would expect the count of

the popular primes up to x to be at least x1/4/ log3/2 x, substantially better than what we are able to prove
in Corollary 5.1. In a forthcoming paper we will further discuss the convex primes as well as the midpoint
convex primes, including a significantly improved upper bound for their count.

7. Optimization of factoring algorithms: making squares

As mentioned in the introduction, the analysis done here is closely related to a key step in the analysis
of the running time of a variety of factoring algorithms. In particular, one wishes to choose an optimal
smoothness bound y so as to minimize the number of random integers that must be chosen from the interval
[1, x] before the product of some subset of the integers chosen at random is a square. When some subset of
the integers has this property we say that the set has a square dependence. Since the probability an integer
chosen at random from the interval [1, x] is y-smooth is x

Ψ(x,y) , and any set of π(y) + 1 y-smooth integers

contains a square dependence, it is advantageous to pick a value of y which minimizes the expression xπ(y)
Ψ(x,y) ,

or equivalently maximizes

Ψ(x, y)

π(y)
=

(
1 +O

(
1

log y

))
Ψ(x, y) log y

y
≈ Ψ(x, y)

y
. (73)

The analysis of the maximum value of Ψ(x,y)
y is highly similar to the analysis of the peak value of Ψ

(
x
p , p
)

performed in Section 4. In fact, maximizing Ψ(x,y)
y requires maximizing the same expression (39) as in the

proof of Theorem 4.1, with the modification that now u = log x
log p , rather than that value shifted by one. One

thus finds that after suitably modifying the implicitly defined function ν(x) used in the proof, replacing it

instead with the function ω(x) = ξ

(√
ω(x)
log x

)
, which satisfies the functional equation

eω(x) = 1 +
√
ω(x) log x, (74)

and, like ν(x) is given approximately by

ω(x) = 1
2 log log x+ 1

2 log log log x− 1
2 log 2 + o(1) (75)

as x→∞, the exact same analysis goes through and one obtains the following.

Theorem 7.1. If, for a given value of x, the prime p maximizes the expression Ψ(x,p)
p , then

p = exp

{√
ω(x) log x+

1

4

(
1− ω(x)− 3

2ω(x)2 − 3ω(x) + 1

)}(
1 +O

((
log log x

log x

) 1
4

))
. (76)

Comparing the functions ν(x) and ω(x), we find that

ν(x)− ω(x) = log(
√
ν(x) log x− ν(x) + 1)− log(

√
ω(x) log x+ 1)

=
1

2
log ν(x)− 1

2
logω(x) + log

(
1−

√
ν(x)

log x

)
+O

(
1√

log x log log x

)

= −

√
ν(x)

log x
+

1

2
log

(
1 +

ν(x)− ω(x)

ω(x)

)
+O

(
1√

log x log log x

)

= −

√
ν(x)

log x
+O

(
1√

log x log log x

)
. (77)
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We can use this to restate Theorem 7.1 in terms of the function ν(x) for comparison to Theorem 4.1.

Corollary 7.2. If, for a given value of x, the prime p maximizes the expression Ψ(x,p)
p , then

p = exp

{√
ν(x) log x+

3

4
+O

(
1

log log x

)}
. (78)

Proof. Using (77), we see that

√
ω(x) log x =

√√√√(ν(x) +

√
ν(x)

log x
+O

(
1√

log x log log x

))
log x

=

√√√√ν(x) log x+
√
ν(x) log x+O

(√
log x

log log x

)

=
√
ν(x) log x+

1

2
+O

(
1

log log x

)
. (79)

Using this approximation in (76) the result follows. �

The method of proof can also be adapted to maximize the function Ψ(x,y)
π(y) , which is slightly more relevant to

the optimization of these factoring algorithms. Using the approximation π(y) = y
log y

(
1 + 1

log y +O
(

1
log2 y

))
we find that again, the analysis is nearly identical to that of Theorem 4.1 with the function ω(x) used in
place of ν(x). However, instead of equation (41), we find that we are maximizing the ratio

Ψ (x, s)π(P0)

Ψ (x, P0)π(s)
=

x log s
s ρ(us)

(
1 + 1−γ

log sξ(us)
)(

1− 1
log s

)
x logP0

P0
ρ(u0)

(
1 + 1−γ

logP0
ξ(u0)

)(
1− 1

logP0

) (1 +O

(
1

u2
0

))
, (80)

where u0 and us have been suitably modified.
As before, the term (

1 + 1−γ
log sξ(us)

)(
1− 1

log s

)
(

1 + 1−γ
logP0

ξ(u0)
)(

1− 1
logP0

)
can be absorbed into the error term, however the additional ratio of log s

logP0
=
(

1 + c
u0

)
introduces an addi-

tional c
u0

in the exponent of (45).
As a result, when we maximize c, we find that it now occurs for some c satisfying

c =
3

4ω(x)

(
1− 3ω(x)− 5

6ω(x)2 − 9ω(x) + 3

)
+O

(
1√

ω(x)u0

)
. (81)

Thus we can conclude the following asymptotic, usefull in determining the optimal smoothness bound for
use in integer factorization.

Theorem 7.3. If, for a given value of x, the prime p maximizes the expression Ψ(x,p)
π(p) , then

p = exp

{√
ω(x) log x+

3

4

(
1− 3ω(x)− 5

6ω(x)2 − 9ω(x) + 3

)}(
1 +O

((
log log x

log x

)1/4
))

= exp

{√
ν(x) log x+

5

4
+O

(
1

log log x

)}
. (82)

Note that (82) implies that in the limit as x→∞, the ratio of the prime, p, which maximizes Ψ(x,p)
π(p) to a

prime popular on [2, x] tends to e.

Having estimated the value of y which maximizes Ψ(x,y)
π(y) relatively precisely, we can likewise give an

estimate for the maximum value of this function. Note that the maximum value of this function is what
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plays a key role in the analysis of factoring algorithms. Denote by h(x) this maximum value of Ψ(x,y)
π(y) taken

over all y < x. Croot, Granville, Pemantle and Tetali showed [3] that if one chooses integers at random
between 1 and x until the sequence contains a square dependence, then the expected stoping time lies in

the interval
[
(πe

−γ

4 + o(1)) x
h(x) , (e

−γ + o(1)) x
h(x)

]
, and futhermore that as x → ∞, the stopping time lies,

almost surely in this interval. The only estimate that they give for h(x), however, is that

h(x) = x exp
{
−
√

(2 + o(1)) log x log log x
}
.

(In their notation, J0(x) = x
h(x) .) We give here an asymptotic expression for the value of this function,

proving Theorem 1.5 in the introduction.

Theorem 7.4. For a given value of x, the value of h(x), the maximum value of Ψ(x,y)
π(y) for y < x is given

asymptotically by

h(x) =
x√

2π log x
exp

{
−2
√
ω(x) log x+

∫ ω(x)

0

es−1

s
ds+

3ω(x)

2
+ γ +O

(
1

log log x

)}
(83)

or, equivalently, the same expression with ν(x) in place of ω(x),

h(x) =
x√

2π log x
exp

{
−2
√
ν(x) log x+

∫ ν(x)

0

es−1

s
ds+

3ν(x)

2
+ γ +O

(
1

log log x

)}

= C(x)

(
1 +O

(
1

log log x

))
, (84)

where C(x), defined before Corollary 4.2, is the number of times a prime, popular on [2, x], appears as the
largest prime divisor of an integer on that interval.

Proof. Because π(y) = y
log y

(
1 +O

(
1

log y

))
, the proof is essentially identical to that of Corollary 4.2, (again

using ω(x) in place of ν(x)) with the exception that in (51) we now have u = log x
log p , which causes us to lose a

factor of ω(x) in the exponent of the expression (53), and that the final expression is multiplied by a factor
of

log y =
√
ω(x) log x

(
1 +O

(
1√

ω(x) log x

))
= eω(x)

(
1 +O

(
1√

ω(x) log x

))
,

which then restores that factor of ω(x) to the exponent.
Using this, we obtain (84) by using (79) (which decreases the exponent by 1 when using ν(x)) along with

the observation that∫ ω(x)

ν(x)

es − 1

s
ds = (ω(x)−ν(x))

eν(x)−1

ν(x)
+O

(
(ω(x)−ν(x))

(
eω(x)−1

ω(x)
−e

ν(x)−1

ν(x)

))

=

(√
ν(x)

log x
+O

(
1√

ν(x) log x

))(√
log x

ν(x)
−1

)
+O

(√
ν(x)

log x

(√
log x

ω(x)
−

√
log x

ν(x)

))

= 1 +O

(
1

ν(x)

)
,

which, in turn, increases the exponent by 1. �
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Math., vol. 139, Birkhäuser Boston, Boston, MA, 1996, pp. 703–711. MR 1409387 (97k:11174)
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