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Abstract. We obtain explicit forms of the current best known asymptotic upper
bounds for gaps between cubefree integers. In particular, we show that the
interval (x, x+5x1/7 log x] contains a cubefree integer for any x ≥ 2. The constant
5 can be improved further, if x is assumed to be larger than a very large constant.

1. Introduction

If k ≥ 2 is a fixed integer, an integer n is called k-free if it is not divisible by pk

for any prime p. In the special cases k = 2 and k = 3, the k-free integers are also
known, respectively, as squarefree and cubefree. The distribution of k-free integers,
especially in the squarefree case, has been studied for a long time and by many
mathematicians.

An important part of that research concerns the study of the size of gaps between
consecutive k-free numbers. Its history originates with Fogels’ result [5] that if
θ > 2/5 the interval (x, x+xθ] contains a squarefree integer for all sufficiently large
x. In 1951, Halberstam and Roth [6] proved that if k ≥ 2, the interval (x, x + xθ]
contains a k-free integer for any θ > 1/(2k) and for all sufficiently large x. Around
the same time, Erdős [1] proved that there exist infinitely many intervals (x, x+h],
with

h ≫ log x

log log x
,

which contain no squarefree integers. Together, these results inspired the conjecture
that for any fixed ε > 0, the interval (x, x + xε] contains a squarefree integer for
sufficiently large x. This conjecture appears to be far beyond the reach of present
methods, with the sharpest asymptotic bounds known to date going back to the
early 1990s. In 1991, Filaseta and Trifonov [4] proved that there exists a constant
c > 0 such that the interval (x, x+ cx1/5 log x] contains a squarefree integer for all
sufficiently large x. Shortly after, Trifonov [10] generalized this result and proved
that, for each k ≥ 3, there exists a constant c = c(k) > 0 such that the interval
(x, x + cx1/(2k+1) log x] contains a k-free integer for all sufficiently large x. The
reader interested in the detailed history of the problem can consult the survey [3]
by Filaseta, Graham, and Trifonov or the introduction of our earlier work [7].
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In recent years, the number-theoretic community has shown an increased interest
in numerically explicit results, so the present authors set on a quest to obtain fully
explicit versions of the results of Filaseta and Trifonov [4,10]. In [7], we proved the
following explicit theorem about the gaps between squarefree integers.

Theorem 1. For any x ≥ 2, the interval (x, x+11x1/5 log x] contains a squarefree
integer.

In the present paper, we continue our investigations and obtain a similar theorem
on the gaps between cubefree integers.

Theorem 2. For any x ≥ 2, the interval (x, x + 5x1/7 log x] contains a cubefree
integer.

The focus of the above theorems is on providing explicit intervals that work for
all x. The price we pay for this universality are the somewhat elevated values of the
constants 11 and 5 in the theorems. The next result is a version of [7, Theorem 2].
It provides a variant of our main result above, which reduces the constant 5 in
Theorem 2, assuming that one is willing to accept a result that holds only for
sufficiently large x.

Theorem 3. Every interval
• (x, x+ 2x1/7 log x] contains a cubefree number for x ≥ e550;
• (x, x+ x1/7 log x] contains a cubefree number for x ≥ e2300;
• (x, x+ 1

2
x1/7 log x] contains a cubefree number for x ≥ e75 000.

Mossinghoff, Oliveira e Silva and Trudgian [8] investigated long gaps between
squarefree numbers numerically. Their computational work establishes the size of
the longest gaps up to 1018, which are all dramatically smaller than the bounds that
we get in this paper. The largest gap that they find is a string of 18 consecutive
non-squarefree numbers, the first of which is 125 781 000 834 058 568. As a result of
their work, we can assume x ≥ 1018 > e41 throughout the rest of this paper.

Our proof of Theorem 2 relies also on several propositions giving results with
larger exponents, which are however superior to the theorem for small x. Those
results may also be of independent interest. For example, we show that the interval
(x, x + 2x1/5] always contains a cubefree integer (Proposition 2) and the intervals
(x, x+10x1/6] and (x, x+8.5x1/6] contain a cubefree integer for x ≥ e95 and x ≥ e191

respectively (Proposition 3).
We conclude this introduction by remarking that the interested reader can find

the SageMath code for the computational part of our work at
https://github.com/agreatnate/explicit-k-free-integer-bounds

This should allow a motivated reader not only to check the numerical values that
appear below, but also the explore the possibilities for future improvements.

https://github.com/agreatnate/explicit-k-free-integer-bounds
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Notation. Throughout the paper, for a real number θ, we use ⌊θ⌋ to denote the
greatest integer less than or equal to θ; also, {θ} = θ − ⌊θ⌋. We write |A| for
the size of the set A, and π(x) for the prime counting function. Finally, we use
c1, c2, . . . to denote constants that appear in the proofs. Those constants tend to
depend on various parameters introduced throughout our arguments (such as λ, δ
and m); we may indicate such dependencies by labeling our constants as functions
of said parameters—see the constant c2(m) in (3.12), for example.

2. Preliminaries

2.1. Outline of the method. Let N(x, h) be the number of integers in (x, x+ h]
that are not cubefree. To prove any of our theorems, it suffices to show that
N(x, h) < h− 1 for the respective choices of x and h. We first sieve this interval of
the cubes of very small primes. Let J to be a parameter to be chosen later. The
number of integers in (x, x+ h] divisible by the cube of a prime up to J is at most

h

(
1−

∏
p≤J

(
1− 1

p3

))
+ 2π(J) = h

(
1−

∏
p≤J

(
1− 1

p3

)
+

2π(J)

h

)
=: hσ′

0(h, J).

We then count separately the integers divisible by p3 for each prime p > J . We
find that

N(x, h) ≤ hσ′
0(h, J) +

∑
p>J

(⌊
x+ h

p3

⌋
−
⌊
x

p3

⌋)
, (2.1)

where the sum on the right is over all primes greater than J . To bound the latter
sum, we introduce a parameter H, which we will later choose as H = mh, with
m ≥ 1 of moderate size, and we use this parameter to split the sum in (2.1) as
follows: ( ∑

J<p≤H

+
∑
p>H

)(⌊
x+ h

p3

⌋
−
⌊
x

p3

⌋)
=: Σ1 + Σ2. (2.2)

Beginning with the contribution of the small primes, we find that

Σ1 ≤
∑

J<p≤H

(
h

p3
+ 1

)
≤ h

∑
p>J

1

p3
+ π(H)

< h

(
σ1 −

∑
p≤J

1

p3

)
+ π(H), (2.3)

where σ1, the sum of the reciprocals of the cubes of all primes, satisfies
σ1 < 0.1748. (2.4)

Hence,
N(h, x) ≤ h

(
σ0(h, J) + σ1

)
+ π(H) + Σ2, (2.5)
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where

σ0(h, J) = 1−
∏
p≤J

(
1− 1

p3

)
−
∑
p≤J

1

p3
+

2π(J)

h
. (2.6)

The term π(H) in (2.5) can be bounded with the help of the following lemma
due to Rosser and Schoenfeld [9, (3.2)].

Lemma 1. For any x > 1, one has

π(x) <
x

log x

(
1 +

1.5

log x

)
. (2.7)

Applying this lemma, we see that

π(H) < σ2(h,m)h, σ2(h,m) :=
m

log(mh)

(
1 +

1.5

log(mh)

)
. (2.8)

The estimation of the sum Σ2 occupies the remainder of the paper. We remark
that primes p > 3

√
2x do not contribute to that sum. Moreover, if p > h1/3, we get

0 ≤
⌊
x+ h

p3

⌋
−
⌊
x

p3

⌋
≤ h

p3
+ 1 < 2.

Thus, the finite sum Σ2 counts the primes p ∈
(
H, 3

√
2x
]

for which there exists an
integer m with

x

p3
< m ≤ x+ h

p3
,

or equivalently, such that {xp−3} > 1 − hp−3 (where {·} is the fractional part).
Thus,

Σ2 ≤
∣∣S(H,

3
√
2x)
∣∣, (2.9)

where

S(M,N) :=

{
u ∈ Z : M < u ≤ N, gcd(u, 2) = 1, 1− h

u3
≤
{ x

u3

}
< 1

}
. (2.10)

Putting together (2.5), (2.8) and (2.9), we reduce the problem of bounding
N(x, h) to choosing H so that∣∣S(H,

3
√
2x)
∣∣ ≤ hσ3(h,m), (2.11)

for some bounded function σ3(h,m) such that

σ0(h, J) + σ1 + σ2(h,m) + σ3(h,m) < 1− 1

h
. (2.12)
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3. Some lemmas

Our bounds on |S(M,N)| use the simple idea that if the minimum distance
between distinct elements of a set of integers A is at least d, then

|A ∩ (M,N ]| ≤ d−1(N −M) + 1. (3.1)
In particular, we will be interested in the special case of (3.1) when A is a set of
the form

S(M) := S(M,λM),

where λ > 1 is a constant and M is a large parameter, with H ≤ M ≤ 3
√
2x. As we

pointed out in the introduction, the computational work in [8] allows us to assume
that x is large. Thus, we assume in the remainder of the paper that

x ≥ e41, 1000 ≤ h ≤ H ≤ 2x1/3. (3.2)
.

We will the next lemma to sum the ensuing estimates for |S(M)| to obtain bounds
of the form (2.11). For the proof of this result see [2, Lemma 1] and the comments
in [7, Lemma 2].

Lemma 2. Suppose that A1, A2, A3, b1, b2 are positive reals and u, v, λ are real
numbers with 0 < u < v < 1 < λ. Assume that for all M ∈ [xu, xv] the estimate

|S(M)| ≤ A1M
b1 + A2M

−b2 + A3

holds. Then
|S(xu, xv)| ≤ A′

1x
b1v + A′

2x
−b2u + A′

3 log x+ A3,

where
A′

1 =
A1

1− λ−b1
, A′

2 =
A2

1− λ−b2
, A′

3 = A3 ·
v − u

log λ
.

Lemma 3. Suppose that H ≤ M . If u and u + a are distinct elements of S(M),
then

a > 0.3333x−1M4. (3.3)

Proof. This is a variant of [7, Lemma 4], and the proof is similar to the proof of
that result, so we will be brief. Let f(u) = xu−3. If u, u+ a ∈ S(M), we have

f(u) = n1 − θ1, f(u+ a) = n2 − θ2, (3.4)
with n1, n2 ∈ Z, 0 < θ1, θ2 < hM−3 < 10−5. Thus, the mean-value theorem yields
a number ξ ∈ (u, u+ a) such that

|f(u+ a)− f(u)| = a|f ′(ξ)| = 3ax

ξ4
>

3x

(λM)4
.

If n1 = n2, we deduce that
3x

(λM)4
< |θ2 − θ1| <

h

M3
<≤ 1

M2
,
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which contradicts (3.2); thus, |n1 − n2| ≥ 1. So, we have
0.9999 ≤ 1− |θ2 − θ1| ≤ |f(u+ a)− f(u)| = 3axξ−4 < 3axM−4,

and the lemma follows. □

Applying (3.1) to the result of the last lemma, we obtain the following bound on
the size of S(M).

Corollary 1. Under the hypotheses of Lemma 3, we have
|S(M)| ≤ 0.3333−1(λ− 1)xM−3 + 1.

We now use the above lemma to prove the following alternative bound, which is
stronger than (3.3) for M ≤ 1.5x2/7. This is the first of several results that make
use of polynomial identities, similar to (3.6) below, which are inspired by the theory
of Padé approximations. Such identities play a central role in our forthcoming work
on gaps between k-free integers for general k.

Lemma 4. Let λ ≤ 1.2, and suppose that 3λ5h ≤ H ≤ M . If u and u + a are
distinct elements of S(M), then

a > 0.7934x−1/3M5/3. (3.5)

Proof. We recall the algebraic identity
a3(2u+ a)

u3(u+ a)3
=

u+ 2a

(u+ a)3
− u− a

u3
. (3.6)

From this (and defining n1, n2, θ1, θ2 as in (3.4)), we deduce that
a3(2u+ a)x

u3(u+ a)3
= f(u+ a)(u+ 2a)− f(u)(u− a)

= (n2 − θ2)(u+ 2a)− (n1 − θ1)(u− a) = n+ θ, (3.7)

where n ∈ Z and θ = (u−a)θ1−(u+2a)θ2. In particular, using that 0 < θi < hM−3

and u, u+ a ∈ (M, 1.2M ], we get
|θ| ≤ a(2θ1 + θ2) + u|θ1 − θ2| < (u+ 3a)hM−3 ≤ 1.6hM−2. (3.8)

Next, we will prove that n ̸= 0. We have
a3(2u+ a)x

u3(u+ a)3
>

2a3ux

u3(u+ a)3
≥ 2a3x

(λM)5
> 0.6666λ−5M−1, (3.9)

on recalling (3.3) and the trivial bound a2 ≥ 1. On the other hand, if n = 0, the
right side of (3.9) equals θ (which must be positive), and (3.8) and (3.9) together
yield

0.6666λ−5 < 1.6hM−1 ≤ 1.6hH−1,

which contradicts the hypothesis on H. Thus, we must have |n| ≥ 1.
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Similarly to (3.9), we find that

a3(2u+ a)x

u3(u+ a)3
≤ 2a3(u+ a)x

u3(u+ a)3
=

2a3x

u3(u+ a)2
≤ 2a3x

M5
. (3.10)

On the other hand, the hypotheses of the lemma and (3.2) yield

|θ| < 1.6hH−2 < 10−3,

so
a3(2u+ a)x

u3(u+ a)3
≥ |n| − |θ| > 0.999.

Combining the last inequality with (3.10), we deduce

a3 > 0.4995x−1M5, (3.11)

and the conclusion of the lemma follows. □

We can use this to obtain the following.

Corollary 2. Under the hypotheses of Lemma 4, we have

|S(M)| < 1.2604(λ− 1)x1/3M−2/3 + 1.

Next, we consider any three distinct elements u, u + a, u + b of S(M), with
0 < a < b, and obtain lower bounds on b.

Lemma 5. Let λ ≤ 1.04, m ≥ 3, and suppose that mh ≤ H ≤ M . If 0 < a < b
and u, u+ a, u+ b are elements of S(M), then

ab4 ≥ c2(m)x−1M6, (3.12)

where c2(m) = 0.4− 0.05m−1.

Proof. We begin with the identity

a5

u3(u+ a)3
=

6u2 − 3au+ a2

u3
− 6u2 + 15ua+ 10a2

(u+ a)3
. (3.13)

By substitution, this yields also the two companion identities

b5

u3(u+ b)3
=

6u2 − 3bu+ b2

u3
− 6u2 + 15ub+ 10b2

(u+ b)3
; (3.14)

(b− a)5

(u+ a)3(u+ b)3
=

6(u+ a)2 − 3(b− a)(u+ a) + (b− a)2

(u+ a)3

− 6(u+ a)2 + 15(u+ a)(b− a) + 10(b− a)2

(u+ b)3
. (3.15)
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In order to cancel out the higher order terms of u, we subtract (3.13) and (3.15)
from (3.14). This gives

(b− a)(a+ b− 3u)

u3
+

b(5a− b+ 3u)

(u+ a)3
+

a(a− 5b− 3u)

(u+ b)3

=
b5

u3(u+ b)3
− a5

u3(u+ a)3
− (b− a)5

(u+ a)3(u+ b)3
.

(3.16)

For u1 = u, u2 = u+ a, and u3 = u+ b, let
f(ui) = ni − θi, 0 < θi < hM−3 (i = 1, 2, 3).

Multiplying both sides of (3.16) by x, we have that
(b− a)(a+ b− 3u)f(u1) + b(5a− b+ 3u)f(u2) + a(a− 5b− 3u)f(u3) =: n− θ,

where
n = (b− a)(a+ b− 3u)n1 + b(5a− b+ 3u)n2 + a(a− 5b− 3u)n3,

(note that n must be even, as a and b are even) and
|θ| = |b(3u− b)(θ2 − θ1) + 5ab(θ2 − θ3) + a(3u− a)(θ1 − θ3)|

< hM−3(3bu+ 3au+ 3ab− (a− b)2) < 3bhM−3(2u+ a)

< 6bhM−3(u+ b) < 6λbhM−2. (3.17)
Next, we show that n ̸= 0. Suppose not. A direct check reveals that

b5

u3(u+ b)3
− a5

u3(u+ a)3
− (b− a)5

(u+ a)3(u+ b)3
=

P (u; a, b)

u3(u+ a)3(u+ b)3
,

where
P (u) = 5ab(b− a)(b2 − ab+ a2)u3 + 3ab(b4 − a4)u2

+ 3a2b2(b3 − a3)u+ a3b3(b2 − a2)

> 5ab(b− a)(b2 − ab+ a2)u3 ≥ 5a2b2(b− a)u3 > 10a3bu3. (3.18)
In particular, the two sides of (3.16) are positive. When n = 0, this entails that
θ < 0, and

−θ =
P (u; a, b)x

u3(u+ a)3(u+ b)3
>

10a3bu3x

u3(u+ a)3(u+ b)3
≥ 10b(0.4995M5)

(λM)6
,

after appeals to (3.18) and (3.11). Hence, comparing the bound above to (3.17),
4.995λ−6bM−1 < 6λbhM−2 ≤ 6λbh(HM)−1,

or
m =

H

h
<

6λ5

4.995
which contradicts the hypotheses of the lemma. As such, we must have that |n| ≥ 2.



EXPLICIT GAPS BETWEEN CUBEFREE INTEGERS 9

On the other hand, bounding the numerator P (u; a, b) from above, we find that

P (u) ≤ 5ab(b− a)(b2 − ab+ a2)u3 + 3ab5u2 + 3a2b5u+ a3b5

≤ 5ab3(b− a)u3 + 3ab5u2 + 3ab6u+ ab7

< ab4(5u3 + 3bu2 + 3b2u+ b3) < 5ab4(u+ b)3.

Thus,

n− θ =
P (u; a, b)x

u3(u+ a)3(u+ b)3
≤ 5ab4x

u3(u+ a)3
< 5ab4xM−6. (3.19)

Further, recalling that b < (λ− 1)M , we deduce that

|θ| ≤ 6λbhM−2 < 0.25hM−1 ≤ 0.25hH−1. (3.20)

From (3.19) and (3.20), we deduce that

5ab4xM−6 ≥ P (u; a, b)x

u3(u+ a)3(u+ b)3
≥ 2− |θ| > 2− 0.25hH−1,

which implies the conclusion of the lemma. □

Corollary 3. Under the hypotheses of Lemma 5, we have

|S(M)| ≤ 2(λ− 1)c2(m)−1/5x1/5M−1/5 + 2.

4. Main bounds on |S(M)|

In this section, we first study a special family of quadruples u, u+a, u+b, u+a+b
of elements of S(M). The special form of the spacing between the four numbers
allows us to use several algebraic identities to obtain a series of lower bounds on
products of the form aibj. These yield bounds on b that are stronger than those
for general quadruples in S(M). Later in the section, we will average these bounds
over b.

Lemma 6. Let λ ≤ 1.04, m ≥ 3, and suppose that mh ≤ H ≤ M . If 0 < a ≤ b
and u, u+ a, u+ b, u+ a+ b are elements of S(M), then

a3b > 0.0999x−1M6. (4.1)

Proof. Note that under the hypotheses of the lemma, we have

a ≤ 1

2
(a+ b) < 0.5(λ− 1)M. (4.2)

Recall that, by (3.7) and (3.8), we have

a3(2u+ a)x

u3(u+ a)3
= n1 + θ1
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with n1 ∈ Z and |θ1| < 1.6hM−2. Indeed, using (4.2) we can strengthen this to
|θ1| < 1.06hM−2. Similarly,

a3(2u+ 2b+ a)x

(u+ b)3(u+ a+ b)3
= n2 + θ2

with n2 ∈ Z and |θ2| < 1.06hM−2. Combining these identities, we find that
a3(2u+ a)x

u3(u+ a)3
− a3(2u+ 2b+ a)x

(u+ b)3(u+ a+ b)3
= n+ θ

with |θ| ≤ |θ1| + |θ2| < 2.12hM−2. Now, we note that when the right side of the
above identity is combined into a single fraction, the numerator can be written as

a3x[4bu3(u+ a)3 + 3abu2(u+ a)3 + 3b(2u+ a)u3(u+ a)2 + other positive terms].

Since
3abu2(u+ a)3 + 3b(2u+ a)u3(u+ a)2 > 6bu3(u+ a)3,

we can use (3.11) to obtain the lower bound

n+ θ ≥ 10a3bu3(u+ a)3x

u3(u+ a)3(u+ b)3(u+ a+ b)3

=
10a3bx

(u+ b)3(u+ a+ b)3
≥ 20a3x

(λM)6
≥ 9.99

λ6M
.

In particular, if n = 0, we see that

9.99λ−6 ≤ Mθ < 2.12hM−1 < 2.12m−1,

which contradicts the hypotheses. Thus, we must have |n| ≥ 1.
We now observe that (note the first equality can be checked using a computer

algebra system)

(2u+ a)(u+ b)3(u+ a+ b)3 − (2u+ 2b+ a)u3(u+ a)3

= 10bu3(u+ a+ b)3 + b(3(a+ b)2 + 7b2 + 9ab)u2(u+ a+ b)2

+ b2(3(a+ b)3 + ab2 + 2a2b− b3)u(u+ a+ b) + ab3(a+ b)3

< 10bu3(u+ a+ b)3 + 10b(a+ b)2u2(u+ a+ b)2

+ 3b2(a+ b)3u(u+ a+ b) + ab3(a+ b)3

< 10bu3(u+ a+ b)3 + b2u2(u+ a+ b)3 + b3u(u+ a+ b)3 + b4(a+ b)3

< b(u+ a+ b)3(10u3 + bu2 + b2u+ b3) < 10b(u+ b)3(u+ a+ b)3.

Thus,

1− |θ| ≤ n+ θ ≤ 10a3bx

u3(u+ a)3
≤ 10a3bxM−6.
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Since |θ| ≤ 2.12hH−2 < 0.001, we conclude that
0.999 < 10a3bxM−6,

and the lemma follows. □
Lemma 7. Let λ ≤ 1.04, m ≥ 8, and suppose that mh ≤ H ≤ M . If 0 < a ≤ b
and u, u+ a, u+ b, u+ a+ b are elements of S(M), then

a3b3 > 0.0664x−1M7. (4.3)

Proof. First, we observe that if b ≥ 0.01M , Lemma 6 gives
a3b3 ≥ 0.0999b2x−1M6 ≥ 0.000009x−1M8 > 0.07x−1M7,

since M ≥ mh ≥ 8000. Thus, we may assume for the remainder of the proof that
0 < a ≤ b < 0.01M . Let u1 = u, u2 = u + a, u3 = u + b, and u4 = u + a + b, and
recall that by the definition of the set S(M), there exist integers n1, . . . , n4 and
reals θ1, . . . , θ4 such that

f(ui) = ni − θi, 0 < θi < hM−3 (1 ≤ i ≤ 4). (4.4)
We begin by constructing a rational function of the form

R(u; a, b) =
P1(u; a, b)

u3
+

P2(u; a, b)

(u+ a)3
+

P3(u; a, b)

(u+ b)3
+

P4(u; a, b)

(u+ a+ b)3
, (4.5)

where Pi(u; a, b) are homogeneous quadratic polynomials, which are at most linear
in u. Clearly, any such rational function can be rewritten as

R(u; a, b) =
C(u; a, b)

u3(u+ a)3(u+ b)3(u+ a+ b)3
, (4.6)

for some homogeneous polynomial C(u; a, b) of total degree 11, which has at most
degree 10 in u. We choose the polynomials Pi(u; a, b) as to minimize the degree of
C with respect to u. The identities

u+ 2a

(u+ a)3
− u− a

u3
=

a3(2u+ a)

u3(u+ a)3
,

1

u3
− 1

(u+ a)3
=

a(3u2 + 3ua+ a2)

u3(u+ a)3
,

imply that any choice of the form
P1(u, a, b) = α(−u+ a)− β, P2(u, a, b) = α(u+ 2a) + β,

P3(u, a, b) = P1(u+ b, a, b) + 2β, P4(u, a, b) = P2(u+ b, a, b)− 2β,

where α, β depend only on a, b, reduces the u-degree of C to at most 7. The choice
α = 3b and β = a2 then ensures that the coefficients of u7 and u6 in C(u; a, b) also
cancel out. Thus, we choose

P1(u, a, b) = −3bu+ 3ab− a2, P2(u, a, b) = 3bu+ 6ab+ a2,

P3(u, a, b) = −3bu− 3b2 + 3ab+ a2, P4(u, a, b) = 3bu+ 3b2 + 6ab− a2.
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With the above choice, a straightforward (but tedious) direct calculation reveals
that

C(u; a, b) = 6a3b(5b2 − a2)v5 − 15a3b(a+ b)(5b2 − a2)v4 +D(v; a, b), (4.7)

where v = u+ a+ b and D(v; a, b) is a homogeneous polynomial of total degree 11,
which is cubic in v. In particular, the coefficient of v3 in D(v; a, b) is

72a3b5 + 150a4b4 + 52a5b3 − 30a6b2 − 12a7b < 74a3b3(a+ b)2,

on recalling that 0 < a ≤ b. Note that we have also

72a3b5 + 150a4b4 + 52a5b3 − 30a6b2 − 12a7b > 58a3b3(a+ b)2.

Similarly, the coefficient of v2 is bounded above and below as

−36a3b3(a+b)3 < 3a8b+18a7b2−3a6b3−93a5b4−108a4b5−33a3b6 < −27a3b3(a+b)3;

the coefficient of v is bounded above and below as

6a3b4(a+ b)3 < −3a8b2− 6a7b3+18a6b4+48a5b5+33a4b6+6a3b7 < 14a3b4(a+ b)3;

and the constant (in v) terms are bounded as

−4.25a4b5(a+ b)2 < a8b3 − 6a6b5 − 8a5b6 − 3a4b7 < −3a4b5(a+ b)2.

Moreover, since M < u < v ≤ λM and 0 < a, b < 0.01M , we find that

a4b5(a+ b)2 < 0.01a3b4(a+ b)3v, a3b4(a+ b)3v < 0.01a3b3(a+ b)3v2,

a3b3(a+ b)3v2 < 0.02a3b3(a+ b)2v3.

From these and the earlier bounds on the coefficients of D(v; a, b), we deduce that

0 < D(v; a, b) < 74a3b3(a+ b)2v3. (4.8)

Inserting this upper bound into (4.7) we now have

C(u; a, b) = 6a3b(5b2 − a2)v5 − 15a3b(a+ b)(5b2 − a2)v4 +D(v; a, b)

≤ a3bv3
(
6(5b2 − a2)v2 − 15(a+ b)(5b2 − a2)v + 74b2(a+ b)2

)
.

We expand v = u+ a+ b (and use a+ b < 0.02u) to bound the term in parentheses
above as

6(5b2 − a2)v2 − 15(a+ b)(5b2 − a2)v + 74b2(a+ b)2

= 6(5b2 − a2)u2 − 3(a+ b)(5b2 − a2)u− 9(a+ b)2(5b2 − a2) + 74b2(a+ b)2

≤ 6(5b2 − a2)u2 − 3(a+ b)(5b2 − a2)u+ 38b2(a+ b)2

< 6(5b2 − a2)u2 − 12(a+ b)b2u+ (a+ b)b2u < 30b2u2.
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Thus C(u; a, b) < 30a3b3u2v3. We can also use (4.8) to bound C from below:

C(u; a, b) = 3a3b(5b2−a2)v4(2v − 5(a+b)) +D(v; a, b)

> 12a3b3v4(2u− 3(a+b))

> 12a3b3v2
(
u2 + 2(a+ b)u

)
(2u− 3(a+ b))

> 12a3b3uv2
(
2u2 + 0.98(a+ b)u

)
> 24a3b3u3v2.

From these bounds and (4.6), we deduce that

18.238a3b3M−7 <
24a3b3

(λM)7
≤ R(u; a, b) ≤ 30a3b3M−7. (4.9)

On the other hand, multiplying both sides of (4.5) by x, we get from (4.4) that

xR(u; a, b) = n− θ

where n ∈ Z is even (since all of the coefficients in each of the Pi are even) and

θ =
4∑

i=1

Pi(u; a, b)θi.

We can bound |θ| as follows:

|θ| ≤ 3bu|θ1 − θ2|+ 3b(u+ b)|θ3 − θ4|
+ 3ab(θ1 + 2θ2 + θ3 + 2θ4) + a2|θ1 − θ2 − θ3 + θ4|

<
(
3b(u+ b) + 3bu+ 18ab+ 2a2

)
hM−3

< (6b(u+ a+ b) + 11ab)hM−3 < (6λ+ 0.11)bhM−2,

upon recalling that u+ a+ b < λM and a < 0.01M .
Next, we will show that n ̸= 0. Suppose that n = 0. Then we have

18.238a3b3xM−7 ≤ |Cx| = |θ| ≤ (6λ+ 0.11)bhM−2 ≤ 6.35bhM−2.

Combining this inequality with (4.1), we obtain

1.822b2M−1 < 18.238a3b3xM−7 ≤ 6.35b(mM)−1,

which is a contradiction under the hypotheses of the lemma. Thus n ≥ 2, and we
get

Cx = n− θ > 2− 6.35bhM−2 > 2− 0.0635m−1 > 1.992.

Combining this with the upper bound in (4.9), we get that

1.992 < Cx < 30a3b3xM−7,

and the desired conclusion follows. □
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Our last lemma differs from the spacing lemmas established hitherto. In this
lemma, instead of proving that the distance b between the two pairs exceeds some
lower bound in terms of x,M , and possibly, a, we establish a kind of a dichotomy for
b: either b ≥ B1 for some lower bound B1, or b ≤ B2, with B2 significantly smaller
than B1. Note, however, that this dichotomy is not complete, and conditions (4.10)
and (4.11) below are not always mutually exclusive—when M is close to H and
m ≤ 15, the two inequalities may hold simultaneously.

Lemma 8. Let λ ≤ 1.04, m ≥ 8, and suppose that mh ≤ H ≤ M . If 0 < a ≤ b
and u, u+a, u+b, u+a+b are elements of S(M), then at least one of the conditions

a5b < 2λ9hx−1M6, (4.10)
or

a5b > (1
3
− 2λ2m−1)x−1M7, (4.11)

must hold.

Proof. As in the proof of the last lemma, let u1 = u, u2 = u + a, u3 = u + b, and
u4 = u+ a+ b, and recall (4.4). We rely on the identity

a5x

u3(u+ a)3
=

(6u2 − 3au+ a2)x

u3
− (6u2 + 15ua+ 10a2)x

(u+ a)3

= (6u2 − 3ua+ a2)f(u)− (6u2 + 15ua+ 10a2)f(u+ a) = n′ − θ′,

with n′ ∈ Z, even and
θ′ = (6u2 − 3ua+ a2)θ1 − (6u2 + 15ua+ 10a2)θ2.

Using this relation and the analogous one for the pairs u+ b, u+a+ b, we find that
xa5

u3(u+ a)3
− xa5

(u+ b)3(u+ a+ b)3
= n+ θ, (4.12)

with n ∈ Z even and
|θ| < (6u2 + 6(u+ b)2 + 12au+ 15ab+ 11a2)hM−3

< (6(u+ a+ b)2 + 6(u+ a)2)hM−3 < 12λ2hM−1.

By the mean-value theorem,
(u+ b)3(u+ a+ b)3 − u3(u+ a)3 = 3bξ2(ξ + a)2(2ξ + a)

for some ξ ∈ (u, u+ b), so
6bu3(u+ a)2 < (u+ b)3(u+ a+ b)3 − u3(u+ a)3 < 6b(u+ b)2(u+ a+ b)3.

We use this to bound the left side of (4.12) and get that

n+ θ ≤ 6a5bx

u3(u+ a)3(u+ b)
< 6a5bxM−7.
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Similarly, we have

n+ θ ≥ 6a5bx

(u+ a)(u+ b)3(u+ a+ b)3
> 6λ−7a5bxM−7.

Since M ≥ H, we have that |θ| < 12λ2m−1. So, it follows from the upper bound
on n+ θ that if b ≤ (1

3
− 2λ2m−1)a−5x−1M7, we have

n+ θ < 6a5bxM−7 < 2− |θ|;
hence, n < 2. On the other hand, if b ≥ 2λ9a−5hx−1M6, then using the lower
bound for n+ θ, we have that

n+ θ > 6λ−7a5bxM−7 ≥ 12λ2hH−1 > |θ|,
implying that n > 0. Since n > 0 and n < 2 cannot occur simultaneously when n
is even, the lemma follows. □

Let
A = (0.4− 0.05m−1)1/5x−1/5M6/5. (4.13)

In Lemma 5, we proved that b ≥ A whenever u, u+ a, u+ b are distinct elements
of S(M). Therefore, if u0, u1, . . . , us are the elements of S(M), listed in increasing
order, the set S ′(M) = {u0, u2, u4, . . . } has no gaps < A and satisfies

|S(M)| ≤ 2|S ′(M)|. (4.14)
We will use (4.14) and Lemmas 7 and 8 to prove the following result.
Proposition 1. Suppose h = 5x1/7 log x, let λ = 1.04 and x ≥ e200, and suppose
that 11h ≤ M ≤ x2/7. Then

|S(M)| ≤ h(σ3(M) + σ4(M)), (4.15)
where

σ3(M) =
(
0.4212x1/7 + 0.1900x−1/7M

)
h−1 + 0.0374x1/21M−1/3, (4.16)

and

σ4(M) =

{
0.9519x−2/3M11/3 if M ≤ 18x1/6,

5.1698x−1/15M1/15 if M > 18x1/6.
(4.17)

Remark 1. Notice that when x is relatively small, the condition M ≤ 18x1/6 is
impossible, and so only the second condition will be used in the range of “small”
values of x.

The proof of these proposition uses the set
T (M ; a) = {u : u, u+ a are consecutive elements of S ′(M)}

to bound |S ′(M)|. The starting point is the elementary identity

|S ′(M)| = 1 +
∞∑
a=1

|T (M ; a)| = 1 +
∑
a≥A

|T (M ; a)|, (4.18)
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which is a direct consequence of the definition of T (M ; a). Further, for any B ≥ A,
we have ∑

a≥B

a|T (M ; a)| ≤
∑
a≥A

a|T (M ; a)| ≤ (λ− 1)M + 1,

so ∑
a≥B

|T (M ; a)| ≤ (λ− 1)MB−1 +B−1.

Applying this inequality to the right side of (4.18), we find that, for any param-
eter B ≥ 2,

|S ′(M)| ≤ 1.5 + (λ− 1)MB−1 +
∑

A≤a<B

|T (M ; a)|. (4.19)

Proof of Proposition 1. We select
B = δx−1/7M, δ = 0.19, (4.20)

in the application of (4.19). Fix an integer a, with A ≤ a ≤ B. By Lemma 8, if we
consider an interval I of length

|I| ≤ (1
3
− 2λ2m−1)x−1M7,

we must have b < 2λ9ha−5x−1M6 for any elements u, u + b ∈ T (M ; a) ∩ I. Then
we can use (4.3) to get

|T (M ; a) ∩ I| ≤ 2λ9ha−5x−1M6

(0.0664)1/3a−1x−1/3M7/3
+ 1

< 7.0298a−4hx−2/3M11/3 + 1.

Since we need at most
(λ− 1)M

(1
3
− 2λ2m−1)x−1M7a−5x−1M7

+ 1 < 0.2929a5xM−6 + 1

intervals of length |I| to cover (M,λM ], we conclude that
|T (M ; a)| ≤ (0.2929a5xM−6 + 1)(7.0298a−4hx−2/3M11/3 + 1)

≤ 2.0591ahx1/3M−7/3 + 0.2929a5xM−6 + 7.0298a−4hx−2/3M11/3 + 1.
(4.21)

Next, we use this to bound the right side of (4.19). With our choice of parameters,
(4.19) yields

|S ′(M)| ≤ 1.5 + 0.04δ−1x1/7 +
∑

A≤a<B
a even

|T (M ; a)|. (4.22)

Next, we sum each of the four terms on the right side of (4.21) over a ∈ [A,B).
Recall the inequality ∑

k≤K

ks <
(K + 1)s+1

s+ 1
(s > 0),
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and note that B = δMx−1/7 ≥ 11hδx−1/7 > 10.45 log x > 2090. Thus,∑
2≤a≤B
a even

as <
(B + 2)s+1

2(s+ 1)
<

(1.001B)s+1

2(s+ 1)
,

and we deduce

2.0591hx1/3M−7/3
∑

A≤a<B
a even

a <
2.0591(1.001B)2

4
x1/3M−7/3

< 0.0187hx1/21M−1/3, (4.23)

0.2929xM−6
∑

A≤a<B
a even

a5 <
0.2929 · (1.001B)6

12
xM−6 < 0.00001x1/7. (4.24)

Combining (4.20)–(4.24), we conclude that

|S ′(M)| ≤ hσ′
3(M) + 7.0298hx−2/3M11/3

∑
A≤a<B
a even

a−4, (4.25)

where

σ′
3(M) =

(
0.2106x1/7 + 0.095x−1/7M

)
h−1 + 0.0187x1/21M−1/3. (4.26)

We estimate the sum on the right side of (4.25) in different ways, depending on
the size of M . When M ≤ 18x1/6, we use that∑

A≤a<B
a even

a−4 <
ζ(4)

16
=

π4

1440
< 0.0677. (4.27)

On the other hand, when M > 18x1/6, we have A > 0.8306 · 186/5 > 26.6513, so∑
A≤a<B
a even

a−4 <
1

3 · 24

(
A

2
− 1

)−3

< 0.2107A−3 < 0.3677x3/5M−18/5. (4.28)

The proposition follows from (4.14) and (4.25)–(4.28). □

5. Proof of Theorem 2

As stated in the introduction, the theorem can be checked by brute force for
x ≤ e41. Thus, we focus on proving it for x ≥ e41.
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5.1. Large x. Let x ≥ e200 and set H = 11h in (2.2) and (2.11). We will use
Proposition 1 and Lemma 2 to bound |S(H, x2/7)|.

Suppose first that H ≤ 18x1/6, (in this case we can assume x ≥ e284) we again
split S(H, x2/7) according to the two cases in (4.17). When we apply Lemma 2 to
the bound (4.15) for M ∈ [H, 18x1/6], we find that

|S(H, 18x1/6)| < h

(
0.9519 · 1811/3x−1/18

1− 1.04−11/3
+

0.0374x1/21H−1/3

1− 1.04−1/3

)
+

3.8x1/42

1− 1.04−1

+ 0.4212x1/7

(
log x

42 log(1.04)
−

log(55
18
log x)

log(1.04)
+ 1

)
< 0.1552h+ 0.2557x1/7 log x− 72.2396x1/7 < 0.2064h.

Similarly, when we apply Lemma 2 to (4.15) for M ∈ [18x1/6, x2/7], we get

|S(18x1/6, x2/7)| < h

(
5.1698x−1/21

1− 1.04−1/15
+

0.0374 · 18−1/3x−1/126

1− 1.04−1/3

)
+

0.19x1/7

1− 1.04−1

+ 0.4212x1/7

(
5 log x

42 log(1.04)
− log 18

log(1.04)
+ 1

)
< 0.1180h+ 1.2785x1/7 log x− 25.6791x1/7 < 0.3737h.

Hence,
|S(H, x2/7)| < 0.2064h+ 0.3737h = 0.5801h. (5.1)

Next, we consider the case H > 18x1/6, noting that we must have x ≤ e285. We
use the latter case of Proposition 1 for M in the full range (H, x2/7], and we find
that

|S(H, x2/7)| < h

(
5.1698x−1/21

1− 1.04−1/15
+

0.0374x1/21H−1/3

1− 1.04−1/3

)
+

0.19x1/7

1− 1.04−1

+ 0.4212x1/7

(
log x

7 log(1.04)
− log(55 log x)

log(1.04)
+ 1

)
< 0.2742h+ 1.5342x1/7 log x− 94.5742x1/7 < 0.5148h, (5.2)

on noting that 94.5742x1/7 > 0.0663h when x ≤ e285.
To complete the estimation of |S(H, 3

√
2x)|, we apply Lemma 2 to the bound in

Corollary 1 for M ∈ [x2/7, 3
√
2x]. This yields

|S(x2/7,
3
√
2x)| ≤ 0.1202x1/7

1− 1.04−3
+

log x

21 log(1.04)
+

log 2

3 log(1.04)
+ 1 < 0.0011h. (5.3)

Combining (5.1)–(5.3), we obtain (2.11) with

σ3 =

{
0.5812 if H ≤ 18x1/6,

0.5159 if H > 18x1/6,
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for all x ≥ e200. Taking J = 100 in (2.6), we have σ0(h, 100) ≤ −0.0066 in the
same range. Furthermore, we have

σ2(h, 11) <

{
0.2256 if x ≥ e284,

0.3020 if x ≥ e200.

Thus,

σ0(h, 100) + σ1 + σ2(h, 11) + σ3(h, 11) <

{
0.9750 if H ≤ 18x1/6,

0.9861 if H > 18x1/6,

which establishes (2.12), and therefore the theorem, for x ≥ e200.

5.2. Intermediate x. Suppose that x ≥ e41. We take h = 2x1/5, H = 2.7h, and
λ = 1.06, and apply Lemma 2 to the result of Corollary 2. We obtain

|S(H,
3
√
2x)| ≤ 1.2604(0.06)(xH−2)1/3

1− 1.06−2/3
+

log 3
√
2x− logH

log(1.06)
+ 1

< 0.3225h+
2 log x

15 log(1.06)
−

log(5.4)− 1
3
log 2

log(1.06)
+ 1 < 0.3354h.

That is, (2.11) holds with σ3(h, 2.7) = 0.3354. As σ2(h, 2.7) ≤ 0.3146, and
σ0(h, 6) < −0.0047 we get

σ0(h, 6) + σ1 + σ2(h, 2.7) + σ3(h, 2.7) < 0.8201.

This establishes that the interval (x, x + 2x1/5] contains a cubefree integer for all
x ≥ e41. Moreover, recalling the results of [8], we obtain the following proposition.

Proposition 2. For any x ≥ 2, the interval (x, x + 2x1/5] contains a cubefree
integer.

Since 2x1/5 ≤ 5x1/7 log x for x ≤ e95.8 the main result follows from Proposition 2
for x ≤ e95. Next, we prove that h = 10x1/6 is admissible when x ≥ e95. With this
choice of h, we let H = 4h and λ = 1.03. An application of Lemma 2 to the bound
of Corollary 3 yields

|S(H,
3
√
2x)| ≤ 0.0726(xH−1)1/5

1− 1.03−1/5
+

2 log x

6 log(1.03)
< 0.5891h,

or σ3(h, 4) = 0.5891 in (2.11). Since σ0(h, 20) < −0.0066 and σ2(h, 4) < 0.2207 for
x ≥ e95, we deduce that

σ0(h, 20) + σ1 + σ2(h, 4) + σ3(h, 4) < 0.9780.

Since 10x1/6 ≤ 5x1/7 log x in the range x ≤ e191.6, this establishes the theorem for
x ≤ e191.
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By the same method we show that h = 8.5x1/6 is admissible when x ≥ e191.
With this choice of h, we let H = 5h and λ = 1.01. In this case, applying Lemma 2
to the bound of Corollary 3 yields

|S(H,
3
√
2x)| ≤ 0.0242(xH−1)1/5

1− 1.01−1/5
+

2 log x

6 log(1.01)
< 0.6767h,

or σ3(h, 5) = 0.6767 in (2.11). Since σ0(h, 20) < −0.0066 and σ2(h, 5) < 0.1465 for
x ≥ e191, we deduce that

σ0(h, 20) + σ1 + σ2(h, 5) + σ3(h, 5) < 0.9914.

Since 8.5x1/6 ≤ 5x1/7 log x in the range x ≤ e200.3, this completes the proof of
Theorem 2.

As we close this section, we take a moment to record the following result, which
we just proved.

Proposition 3. For any x ≥ e95, the interval (x, x + 10x1/6] contains a cubefree
integer, and for any x ≥ e191, the interval (x, x+8.5x1/6] contains a cubefree integer.

6. Asymptotic results

We conclude by noting a few of the explicit bounds that can be obtained by
these methods if one no longer requires the bounds to be admissible for all values
of x ≥ 2, allowing instead results valid for sufficiently large values of x.

Some of the possible results that can be obtained by tweaking the parameters
used in the proof of Theorem 2 are given in the statement of Theorem 3. To prove
any of those results, we reset the parameters m, J, λ, δ that appear in the proofs of
Proposition 1 and Theorem 2 and then update the various constants. (When x is
as large as in Theorem 3, the inequality H ≤ 18x1/6 always holds, so only the first
case in the proof of Theorem 2 can occur.) To establish the claims of Theorem 3,
we always select J = 20, λ = 1.002, and m =

√
log x0, where x0 is the lower bound

on x in each result; we only vary the choice of δ. For example, when h = 2x1/7 log x,
x ≥ e550 (hence, m = 23.4520 · · · ), and δ = 0.38, we have

σ0(h, 20) + σ1 + σ2(h,m) + σ3(h,m) < 0.9914.

For h = x1/7 log x and x ≥ e2300, the choice δ = 0.66 yields an upper bound of
0.9919; and for h = 1

2
x1/7 log x and x ≥ e75 000, δ = 0.9 gives a bound of 0.9977.
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