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Abstract. We prove the existence of primitive sets (sets of integers in which
no element divides another) in which the gap between any two consecutive
terms is substantially smaller than the best known upper bound for the gaps
in the sequence of prime numbers. The proof uses the probabilistic method.
Using the same techniques we improve the bounds obtained by He for gaps in
geometric-progression-free sets.

1. Introduction

Despite the rich history of research on the gaps in the sequence of prime num-
bers, including many recent breakthroughs, the magnitudes of the largest gaps in
this sequence are still poorly understood. Denoting by p1, p2, . . . the sequence of
prime numbers, it has been known since 2001, due to Baker, Harman, and Pintz
[2], that

pn − pn−1 � p0.525
n .

Assuming the Riemann Hypothesis gives a small improvement. Cramér [4] shows

pn − pn−1 �
√
pn log pn.

Cramér [5] conjectures, however, that the bound pn − pn−1 � log2 pn gives the
true order of magnitude of the largest gaps. As for lower bounds, it follows
immediately from the prime number theorem that there must exist gaps where
pn − pn−1 ≥ log pn. This can be improved upon slightly. It has recently been
shown by Ford, Green, Konyagin, Maynard and Tao [9] that, for some positive
constant c, the innequality

pn − pn−1 >
c log pn log log pn log4 pn

log3 pn

holds infinitely often, improving on the previous result of Rankin [15] which
included an additional triple log factor in the denominator. Here, and throughout
the paper, logi x will be used to denote the i-fold iterated logarithm when i ≥ 3.
Since log log x is commonly used it will be used for readability when i = 2.

Generalizing from the set of primes, one can consider any primitive set of
integers. We say a set is primitive if no integer in the set divides another integer
in the set. The study of primitive sets also has a rich history. For example, it is
known that primitive sets can have counting function substantially larger than

2010 Mathematics Subject Classification. 11N25 (primary), and 11B05 (secondary).

1



2 NATHAN MCNEW

the prime numbers. Ahlswede, Khachatrian, and Sárközy [1] showed there exists
a primitive sequence s1 < s2 < · · · with

n � sn
log log sn(log3 sn)1+ε

for sufficiently large n. Martin and Pomerance [12] show that this can be improved
slightly, in fact there exists such a sequence where

n � sn
log log sn log3 sn · · · logk sn(logk+1 sn)1+ε

for sufficiently large n and any k ≥ 2. This is, in a sense, best possible, as Erdős
[8] shows that any primitive sequence s1, s2, . . . must satisfy

∞∑
n=1

1

sn log sn
<∞.

Compared to the sequence of prime numbers, where the average gap grows like
log x, we see from these results that primitive sets can have substantially smaller
gaps on average, on the order of log log x log3 x · · · logk x(logk+1 x)1+ε for any
k ≥ 2. Nevertheless, it has not yet been possible to show that the largest gaps
among these sequences is any smaller than what is known for the prime numbers.

We show here that there exist primitive sequences in which the gap between
consecutive terms is substantially smaller than has been previously shown for the
primes or any other primitive sequence. In particular, we get the following upper
bound.

Theorem 1.1. For any ε > 0 there exists a primitive sequence q1 < q2 < · · · of
integers in which the gap between any two consecutive terms is bounded above by

qn − qn−1 ≤ exp
(√

2 log qn log log qn + (2 + ε) log qn log3 qn

)
. (1)

The proof utilizes the probabilistic method, and so it is not constructive. It
generalizes, however, to the related problem of geometric-progression-free sets,
where the analogous problem has recently attracted attention.

If r > 1 is rational (sometimes we insist it be integral), then a geometric
progression of length k with ratio r is a progression of integers (g1, g2, . . . gk) in
which gi = rgi−1. We say S avoids geometric progressions of length k if it is not
possible to find k integers from S in a geometric progression. Note that primitive
sets can be described as sets avoiding geometric progressions of length 2 in which
we insist that the ratio r must be an integer. For the remainder of the paper we
will assume that our geometric progressions have length at least 3, and, unless
otherwise stated, are allowed to have rational ratio.

In the case of geometric-progression-free sets, unlike primitive sets, there exist
such sets with positive density. In particular, the squarefree numbers avoid geo-
metric progressions and have density 6

π2 , though this density isn’t best possible.
(See [13,14,16] for results on the maximum density of such a set.)

Because of this it is not clear, a priori, that there cannot exist such sets in which
all of the gaps are bounded above by a fixed constant. In ergodic theory a set in
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which every gap is bounded by a constant is known as a syndetic set. Bieglböck,
Bergelsen, Hindman and Strauss [3] first posed the question of whether there
exists a syndetic set that is geometric-progression-free. This problem has become
well-known as a good example of the difficulty inherent in studying problems that
mix the additive and multiplicative structure of the integers, and remains open.

There has been partial progress toward this question for 2-syndetic sets (sets
in which the difference between any two consecutive terms is at most two). He
[11] shows by a computer search that any subset of the range [1,640] containing at
least one of any pair of consecutive numbers must contain three term geometric
progressions. Recently Patil [17] shows that any sequence of integers s1 < s2 <
· · · with sn − sn−1 ≤ 2 must contain infinitely pairs {a, ar2} with r an integer.

In general, one can avoid geometric progressions of length k+1 by taking the
sequence of k-free numbers. Denoting by s1 < s2 < · · · the sequence of k-free
numbers, the best known bound on the gaps, due to Trifonov [18] is that

sn − sn−1 � s
1

2k+1
n log sn.

Though this, again, is likely far greater than the truth.
He [11] considers the existence of geometric-progression-free sets with gaps

provably smaller than the bounds for k-free numbers. He shows the following.

Theorem 1.2 (He). For each ε > 0 there exists a sequence b1 < b2 < · · · avoiding
6-term geometric progressions satisfying

bn − bn−1 �ε exp

((
5 log 2

6
+ ε

)
log bn

log log bn

)
.

Furthermore, there exists a sequence c1 < c2 < · · · avoiding 5-term geometric
progressions satisfying

cn − cn−1 �ε c
ε
n

and a sequence d1 < d2 < · · · that avoids 3-term geometric progressions with
integral ratio in which

dn − dn−1 �ε d
ε
n.

The technique developed here allows us to treat 3-term geometric progressions
with rational ratio and obtain a substantially smaller bound on the size of the
gaps. In particular we prove the following in section 4 .

Theorem 1.3. For any ε > 0 there exists a sequence of integers t1 < t2 < · · ·
free of 3-term-geometric-progressions, such that

tn − tn−1 ≤ exp

(
2

√
log 2 log tn + 3+ε

2

√
log 2 log tn log log tn

)
. (2)

2. Coprime subsets of intervals

We first prove that in any short interval we can find a relatively large subset of
integers that are pairwise coprime. Using the linear sieve of Rosser and Iwaniec
(see for example Theorem 12.14 and Corollary 12.15 of [10]) one can sieve an
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interval of length y by primes up to nearly
√
y. The result can be stated as

follows.

Lemma 2.1. There exist positive constants c1 and c2 so that every interval of
length c1y with y ≥ 2 contains at least y

log2 y
integers free of prime factors smaller

than
√
y, and at most c2y

log y such integers.

Using this we can show that the short interval [x− y, x] contains a reasonably
large subset of pairwise coprime integers. Erdős and Selfridge [7] (see also [6])
prove that for sufficiently large y and any ε > 0 any such interval has a pairwise
coprime subset of size at least y1/2−ε, though their proof is not correct as written.
We correct and refine the argument, using Lemma 2.1 to show the following.

Theorem 2.2. For sufficiently large y and x ≥ y + 1, any interval [x − y, x]

contains a subset of pairwise coprime integers of size at least
c3
√
y

log y for some
positive constant c3.

Proof. Let y′ = y/c1, where c1 is the constant from Lemma 2.1. That lemma
then implies that the set S ⊂ [x− y, x] consisting of integers in this interval free

of prime factors smaller than
√
y′ contains at least y′

log2 y′
integers.

Now, let p ≥
√
y′ be prime, and suppose p|n for some n ∈ S. Then n = pm

where m ∈
[
x
p −

y
p ,

x
p

]
(an interval of length c1y′

p ). Since n is free of prime factors

smaller than
√
y′, m will be free of such primes as well. While we can’t sieve this

shorter interval of primes as large as
√
y′, we can use Lemma 2.1 to sieve this

interval of primes up to
√

y′

p , at least so long as y′

p is at least two. Thus for each

prime
√
y′ ≤ p < y′

2 , the number of integers in S divisible by the prime p is at
most

c2y
′

p log y′

p

.

For those primes y′

2 ≤ p < y, we can bound the number of integers in S divisible

by p trivially by
⌈
y
p

⌉
= O(1).

We now use Turan’s graph theorem to prove that a large subset of S is pairwise
coprime. Construct a graph in which the vertices are the elements of S and
the edges connect vertices corresponding to integers which share a prime factor.
Adding together the total number of edges produced by each prime, we find that
the total number of edges in the graph is at most

1

2

∑
√
y′≤p< y′

2

(
c2y
′

p log y′

p

×

(
c2y
′

p log y′

p

− 1

))
+

1

2

∑
y′
2
≤p<y

⌈
y

p

⌉(⌈
y

p

⌉
− 1

)

≤
∑

√
y′≤p< y′

2

c2
2y
′2

p2 log2 y′

p

+
∑

y′
2
≤p<y

O(1).



PRIMITIVE AND GEOMETRIC-PROGRESSION-FREE SETS WITHOUT LARGE GAPS 5

By partial summation this expression is at most c′y′3/2

log3 y′
for some constant c′.

Turan’s graph theorem states that any graph with v vertices and e edges has

an independent set of vertices of size at least v2

v+2e . Applying this to our graph

we find there must be an independent set of vertices (corresponding to a set of
pairwise coprime integers) of size at least

y′2

log4 y′

y′

log2 y′
+ 2c′y′3/2

log3 y′

�
√
y′

log y′

and the result follows. �

Remark 2.3. Note that in the construction above, the integers in the set were
free of prime factors less than

√
y′, and thus have at most

log x

log
√
y′

=
2 log x

log y − log c1
=

2 log x

log y
+O

(
log x

log2 y

)
prime factors.

3. Primitive sets without large gaps

Using these results we are now able to give a proof of Theorem 1.1 using the
probabilistic method.

Proof of Theorem 1.1. We construct a primitive set according to the following
probabilistic construction and then show that, with high probability, the set we
constructed does not have any gaps greater than the bound (1).

Fix ε > 0. For each prime number pi we choose a corresponding positive-
integer-valued random variable Xi with distribution

P (Xi = n) =
Cε

n log1+
ε
8 (n+ 2)

,

with Cε chosen to normalize the distribution. (Note that the sum of these terms
converges since the power on the logarithm is greater than 1. The purpose of
adding two inside the logarithm is just to make the probability positive when n
is either 1 or 2.) We then construct the set of integers Q = {n ≥ 2 : pi|n →
Ω(n) = Xi}, consisting of only those integers n for which the total number of
prime factors dividing n agrees with the random variable Xi corresponding to
every single one of its prime divisors, pi.

It is readily seen that this construction always produces a primitive set, since
if a ∈ Q, and a|b with b > a, then Ω(a) < Ω(b), but any prime dividing a also
divides b, and so b cannot be in Q.

We now show that we expect every interval of size (1) to contain an element
of this set. Let

y = exp
(√

2 log x log log x+ (2 + ε) log x log3 x
)
, (3)

and consider the interval [x−y, x]. Using Theorem 2.2, along with the observation
of Remark 2.3, there exists a subset S of the integers in this interval containing at
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least
c3
√
y

log y integers from this interval which are pairwise coprime. Furthermore,

the integers in S have no more than 2 log x
log y + O

(
log x
log2 y

)
prime factors. Suppose

n ∈ S, then the probability that n ∈ Q is

P (n ∈ Q) =
∏
pi|n

P (Xi = Ω(n)) =
∏
pi|n

Cε

Ω(n) log1+
ε
8 (Ω(n) + 2)

≥

 Cε(
2 log x
log y +O

(
log x
log2 y

))
log1+

ε
8

(
2 log x
log y +O(1)

)


2 log x
log y

+O
(

log x

log2 y

)

= exp

((
−2 log x

log y
+O

(
log x

log2 y

))
×
(

log

(
log x

log y

)
+
(
1+ ε

8

)
log3 x+Oε (1)

))
= exp

(
−2 log x

log y

(
log

(
log x

log y

)
+
(

1 +
ε

8

)
log3 x+Oε(1)

))
.

Since the elements of S are pairwise coprime, the probability that any one ele-
ment of S is included in Q is independent of the probability of any other element
is included. Thus the probability that no integer from the interval [x − y, x] is
included in Q can be bounded as follows.

P ([x− y, y] ∩Q = ∅) ≤ P (S ∩Q = ∅) =
∏
n∈S

(1− P (n ∈ Q))

≤
∏
n∈S

(
1− exp

(
−2 log x

log y

(
log

(
log x

log y

)
+
(
1 + ε

8

)
log3 x+Oε(1)

)))

≤
(

1− exp

(
−2 log x

log y

(
log

(
log x

log y

)
+
(
1+ ε

8

)
log3 x+Oε(1)

))) c3
√
y

log y

≤ exp

(
−
c3
√
y

log y
× exp

(
−2 log x

log y

(
log

(
log x

log y

)
+
(
1+ ε

8

)
log3 x+Oε(1)

)))
= exp

(
− exp

(
1
2 log y− log log y−2 log x

log y

(
log

(
log x

log y

)
+
(
1+ ε

8

)
log3 x+Oε(1)

)))
.

Now, inserting our choice (3) for the length y of the interval, the innermost
exponent above becomes

1
2

√
2 log x(log log x+

(
1+ ε

2

)
log3 x)−

2 log x
(

log
( √

log x√
log log x

)
+
(
1+ ε

8

)
log3 x+Oε(1)

)
√

2 log x(log log x+
(
1 + ε

2

)
log3 x)

=
√

1
2 log x

√log log x+
(
1+ ε

2

)
log3 x−

log log x+
(
1+ ε

2−
ε
4

)
log3 x+Oε(1)√

log log x+
(
1+ ε

2

)
log3 x


=
ε

8

√
2 log x√

log log x
(log3 x+Oε(1)) .
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Therefore the probability that none of the integers from the interval [x− y, x]
are included inQ, which is less than the probability that no integer in S is included

in Q since S ⊂ [x − y, x], is at most exp
(
− exp

(
ε
8

√
2 log x√

log log x
(log3 x+Oε(1))

))
.

Using linearity of expectation, and by starting the sequence at a sufficiently high
initial value N , we can ensure that the expected number of intervals of the form
[x− y, x] which do not contain an integer in Q is at most∑
x>N

P ([x−y, x] ∩Q = ∅) ≤
∑
x>N

exp

(
− exp

(
ε
√

2 log x

8
√

log log x
(log3 x+Oε(1))

))
< 1

since this series converges.
Because the expected number of intervals that do not contain an integer in Q

is less than 1, there must exist a sequence Q which intersects every such interval,
and thus satisfies the properties of the theorem. �

4. Geometric-Progression-Free sets without large gaps

A very similar construction can be used to prove Theorem 1.3, producing a set
free of 3-term geometric progressions with gaps smaller than those obtained by
He.

Proof of Theorem 1.3. Following the method of proof of Theorem 1.1, we con-
struct a set similar to the squarefree numbers, in the sense that each prime
number is only allowed to appear (if it appears at all) to one fixed power in any
element of the set. As before, we construct this set probabilistically and then
bound the probability that it omits any interval of the size given in (2).

For each prime pi choose a positive-integer-valued random variable Xi with
distribution

P (Xi = n) =
1

2n
.

Now construct the set of integers T = {n ≥ 2 : pi|n → pXii ||n} consisting of
those integers n where the exponent on each of its prime divisors pi is equal to
the random variable Xi. (If pi divides n then pXii is the largest power of pi that
divides n.)

This set T is free of 3-term geometric progressions of integers for essentially the
same reason that the squarefree integers avoid such progressions. If {a, ar, ar2}
is any geometric progression with r ∈ Q, r > 1 and p divides the numerator of r
but not the denominator, then p appears to different, positive, powers in ar and
ar2, and hence both cannot be in T .

We now show that we expect every interval of size (2) to contain an element
of this set. Let

y = exp

(
2

√
log 2 log x+ 3+ε

2

√
log 2 log x log log x

)
(4)

and consider the interval [x−y, x]. We again use Theorem 2.2 to obtain a pairwise

coprime subset S of this interval of size at least
c3
√
y

log y consisting of integers having
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at most 2 log x
log y +O

(
log x
log2 y

)
prime factors. The probability an integer n from this

set is contained in T is

P (n ∈ T ) =
∏
pαi ||n

P (Xi = α) =
∏
pαi ||n

1

2α
=

(
1

2

)Ω(n)

≥
(

1

2

) 2 log x
log y

+O
(

log x

log2 y

)

= exp

(
−
(

2 log 2 log x

log y
+O

(
log x

log2 y

)))
.

Exploiting the fact that elements of S are pairwise coprime, the probability
that none of the elements of S are included in T is∏
n∈S

(1− P (n ∈ T )) ≤
∏
n∈S

(
1− exp

(
−
(

2 log 2 log x

log y
+O

(
log x

log2 y

))))

≤
(

1− exp

(
−
(

2 log 2 log x

log y
+O

(
log x

log2 y

)))) c3
√
y

log y

≤ exp

(
−
c3
√
y

log y
× exp

(
−
(

2 log 2 log x

log y
+O

(
log x

log2 y

))))
= exp

(
− exp

(
1
2 log y − 2 log 2 log x

log y
− log log y +O(1)

))
.

Inserting (4) here for y the innermost exponent above becomes√
log 2 log x+ 3+ε

2

√
log 2 log x log log x− log 2 log x√

log 2 log x+ 3+ε
2

√
log 2 log x log log x

− 1

2
log log x+O(1)

=
√

log 2 log x

√1+
(3+ε) log log x

2
√

log 2 log x
− 1√

1+ (3+ε) log log x

2
√

log 2 log x

−1

2
log log x+O(1)

=
√

log 2 log x

(
(3 + ε) log log x

2
√

log 2 log x
+O

(
(log log x)2

log x

))
− 1

2
log log x+O(1)

=
(

1 +
ε

2

)
log log x+O (1) .

The fourth line above was obtained using the Taylor expansion

√
1 + x− 1√

1 + x
= x+O(x2)

around x = 0.
Therefore, the probability that no such integer is included in T is at most

exp
(
− exp

((
1 + ε

2

)
log log x+O (1)

))
. As before, by linearity of expectation, we

may choose a sufficiently high initial value N so that the expected number of



PRIMITIVE AND GEOMETRIC-PROGRESSION-FREE SETS WITHOUT LARGE GAPS 9

intervals of the form [x− y, x] which do not contain an integer in T is at most∑
x>N

P ([x− y, x] ∩ T = ∅) ≤
∑
x>N

exp
(
− exp

((
1 +

ε

2

)
log log x+O (1)

))
< 1

since this series is convergent. Thus there exists a geometric-progression-free
sequence T satisfying the properties of the theorem. �

5. Final Remarks

While we were able to show that there exist primitive sets in which the gap
between consecutive terms was much smaller than what is known to be true, even
conditionally for the primes, the method developed doesn’t seem to generalize to
sequences of pairwise coprime integers.

Question 5.1. Can one prove that there exists a sequence v1 < v2 < · · · of pair-
wise coprime integers in which the difference between consecutive terms vn−vn−1

is smaller than the best known upper bound for the gaps between primes?
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[3] M. Beiglböck, V. Bergelson, N. Hindman, and D. Strauss, Multiplicative structures in ad-
ditively large sets, J. Combin. Theory Ser. A 113 (2006), no. 7, 1219–1242.

[4] H. Cramér, Some theorems concerning prime numbers, Ark. Mat. Astr. Fys. 15 (1920),
1–33.

[5] , On the order of magnitude of the difference between consecutive prime numbers,
Acta Arithmetica 2 (1936), no. 1, 23–46 (eng).
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