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The Nonnegative Inverse Eigenvalue Problem

Definition

The spectrum of a matrix A, sp(A) = (λ1, λ2, · · ·λn) is the set (with
multiplicity) of the eigenvalues of the matrix A.

The characteristic polynomial of A is:

χA = det(It − A) =
n∏

i=1

(t − λi )

Problem (Suleimanova, 1949)

Given an n-tuple of complex numbers σ := (λ1, λ2, · · ·λn) when is σ the
spectrum of some n × n matrix A with nonnegative entries?

When such a matrix A exists we say A realizes σ, and σ is realizable.
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Necessary Conditions

Definition

A matrix is primitive if it is a square matrix and some power of it is a
matrix with strictly positive entries.

There are several known necessary conditions for σ to be realizable by a
primitive matrix:

1 ∃λi ∈ σ such that λi ∈ R+ and λi > |λj | j 6= i . (Due to the
Perron-Frobenius Theorem. We refer to λi as the Perron eigenvalue
or root.)

2 σ = σ̄ (For each complex number in σ, its complex conjugate is also
in σ.)

3 The kth moment of σ, sk =
∑n

i=1 λ
k
i ≥ 0. ∀k ∈ N and if sk > 0 then

snk > 0 ∀n ∈ N (since sk would be the trace of the matrix Ak)
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Necessary Conditions

Example (n = 2)

Let n = 2, σ = (λ1, λ2), λ1, λ2 ∈ R and λ1 > |λ2|.
Then σ is realized by the matrix:

A =
1

2

[
λ1 + λ2 λ1 − λ2

λ1 − λ2 λ1 + λ2

]

Necessary and Sufficient conditions are known only when n ≤ 3.
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The Boyle Handelman Theorem

Theorem (Boyle and Handelman, 1991)

Let σ satisfy the previous necessary conditions. Then ∃N ∈ N such that σ
augmented by N zeros (ie σ′ = (λ1, λ2, · · ·λn, 0, · · · 0)) is realizable by a
primitive matrix.

Given an n-tuple σ := (λ1, λ2, · · ·λn) λi ∈ C\{0} The Boyle Handleman
theorem gives the necessary conditions for σ to be the nonzero spectrum
of some matrix A, but the proof is not constructive, and puts no bounds
on the size of this matrix.
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The BH theorem and Characteristic Polynomials

Given a polynomial p(t) the Boyle Handelman theorem specifies when
there exists a primitive matrix A and natural number N such that:

tNp(t) = χA(t) = det(It − A) =
n∏

i=1

(t − λi )

Alternatively, one can look at:

χ−1
A (t) = det(I − tA) =

n∏
i=1

(1− tλi ).

This reverse characteristic polynomial does not change as additional
zero eigenvalues are added. Thus the Boyle Handelman theorem specifies
when a given polynomial is exactly the reverse characteristic polynomial of
some matrix A, but puts no bound on the size of A.
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Graphs and Polynomial Matrices

Any matrix A over R+ can be treated as the adjacency matrix for some
directed graph G in which the entry in position (i , j) is the weight of the
edge from vertex i to vertex j.

For example: 3 5.2 0
6 4 96

0.01 2 0



•a

•b

•c

5.2
33

6

ss

96

��

0.01
hh

2

RR

3 77

4��

G can also be represented by a polynomial matrix M(t) over tR+[t].
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Graphs and Polynomial Matrices

Construction of G from M(t):
Let M(t) be an N × N matrix over tR+[t].

1 Assign N vertices the labels 1,2,...N.

2 For each term wtp of the polynomial in the (i,j) position of A[t],
construct a path of length p from vertex i to j with p-1 new distinct
vertices.

3 Weight the first edge w and each additional edge 1(if p > 1.)

In constructing a polynomial matrix from a graph, the weights of
consecutive edges through ”unimportant” vertices are multiplied to find
the term’s coefficient.
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Graphs and Polynomial Matrices

Example:  5t3 + 1.5t 9t3 0
πt2 0 4t2

2t 0.3t2 + t 3.6t
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Graphs and Polynomial Matrices
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1 0 0 0 0 0 0 0 0 0
0 5 1.5 9 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 2 0 3.6 0 0.3 0 0 1
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χG (t) = t10−5.1t9+5.4t8−9t7+22.8t6+(1.8−9π)t5+(32.4π−52)t4+6t3

χ−1
G (t) = 6t7+(32.4π−52)t6+(1.8−9π)t5+22.8t4−9t3+5.4t2−5.1t +1
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Graphs and Polynomial Matrices

Theorem

Given two Matricies A over R+ and M(t) over tR+[t] that correspond to
the same graph G, then:

χ−1
M (t) = det(I − At) = det(I −M(t))

Proof.

Use row operations on I − At to combine rows/columns along a path,
followed by expansion by minors to transform I −At into I −M(t) without
changing the determinant.
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Motivation

A graph with nonnegative entries can be used to describe the possible
trajectories of a dynamical system (Symbolic Dynamics)

In the case of a Shift of Finite Type, all of the information about the
dynamical system is encoded in its zeta function, which corresponds to the
characteristic polynomial of its graph.

When is a given polynomial the characteristic polynomial (zeta function)
for some shift of finite type?
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A Theorem

Theorem

Assume that p(t) =
∏d

i=1 (1− λi t) where the (λ1, λ2, . . . , λd) satisfy the
conditions:

1 ∃λi ∈ σ such that λi ∈ R+ and λi > |λj | j 6= i .

2 σ = σ̄

3 sk =
∑n

i=1 λ
k
i > 0. ∀k ∈ N

Then there is an N ≥ 1 such that the power series expansion for p(t)1/N is
of the form

p(t)1/N = 1−
∞∑

k=1

rktk

where rk ≥ 0 for all k ≥ 1.
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To Recap

We’ve reformulated the original, Nonnegative Inverse Eigenvalue Problem
into a problem about polynomials and polynomial matrices.

The New Problem

Given a polynomial p(t) with p(0) = 1, when does there exist a
polynomial matrix A(t) ∈ tR+[t] such that

p(t) = det(I − A(t))

This problem is equivalent to the ”extended” Nonnegative Inverse
Eigenvalue Problem, solved by the Boyle Handelman theorem.

Our goal: Reprove the Boyle Handelman theorem in a constructive way,
putting some bound on the size of the polynomial matrix necessary to
realize a polynomial.
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The Conjecture

Conjecture

Let p(t) be a polynomial which satisfies the condition that ∃N ≥ 1 such
that p(t)1/N = 1−

∑∞
k=1 rktk where rk ≥ 0 for all k ≥ 1.

Then there exists an N × N polynomial matrix M[t] with all nonnegative
coefficients such that det(I −M[t]) = p(t).

As a result of the previous theorems, proving this conjecture would
(nearly) reprove the Boyle Handelman Theorem (with the exception of the
strengthened third condition.)

Results so far: This conjecture is true for N=1,2,3.
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Case N = 1

Proof (N=1).

Trivial. If p(t)1 = 1− r(t) where r(t) has no negative coefficients then the
matrix A(t) = [r(t)] suffices.

det(I − A(t)) = det([1− r(t)]) = 1− r(t) = p(t)
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N=2

Proof (N=2).

Suppose p(t)1/2 = 1− r(t) where r(t) has no negative coefficients. Then
let q(t) be the polynomial that results when r(t) is truncated to some
degree n (greater than or equal to the degree of p(t).)

Consider the polynomial (1− q(t))2.
The first ”incomplete” term has order n+1, so the first n coefficients
match p(t). Let R(t) = (1− q(t))2 − p(t). Then:

R(t) =
2n∑

i=n+1

∑
j+k=i

qjqkt i

Since all qj and qk are nonnegative, R(t) will contain only nonnegative
terms.
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N=2

Proof Continued(N=2).

Then construct the matrix:

A(t) =

[
q(t) R(t)

t
t q(t)

]

det(I − A(t)) = (1− q(t))2 − R(t) = p(t)
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N=2 Example

p(t) = 1− 3t − 2t2 + 4t3

p(t)1/2 = 1− 3t
2 −

17t2

8 −
19t3

16 −
517t4

128 −
2197t5

256 + · · ·
q(t) = 3t

2 + 17t2

8 + 19t3

16

(1− q(t))2 = 1− 3t − 2t2 + 4t3 + 517t4

64 + 323t5

64 + 361t6

256

R(t) = (1− q(t))2 − p(t) = 517t4

64 + 323t5

64 + 361t6

256

A(t) =

[
(3t

2 + 17t2

8 + 19t3

16 ) (517t3

64 + 323t4

64 + 361t5

256 )

(t) (3t
2 + 17t2

8 + 19t3

16 )

]
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N=3

Idea:
Again, suppose p(t)1/3 = 1− r(t) where r(t) has no negative coefficients,
let q(t) be r(t) truncated to degree n, and let s(t) be the remainder, so
r(t) = q(t) + s(t).

A(t) =

 q(t) α(t) β(t)
0 q(t) t
t 0 q(t)


det(I − A(t)) = (1− q(t))3 − t2α(t) + tβ(t)(1− q(t))

This time R(t) = (1− q(t))3 − p(t) is not strictly positive.
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N = 3 Example

det(I − A(t)) = (1− q(t))3 − t2α(t) + tβ(t)(1− q(t))

p(t) = 1− 5t + 7t2 − 3t3

p(t)1/2 = 1− 5t
2 + 3t2

8 −
9t3

16 −
189t4

128 −
891t5

256 · · ·
p(t)1/3 = 1− 5t

3 −
4t2

9 −
76t3

81 −
508t4

243 −
3548t5

729 · · ·
q(t) = 5t

3 + 4t2

9 + 76t3

81
(1− q(t))3 =

1− 5t + 7t2 − 3t3 + 508t4

81 −
1532t5

243 −
3536t6

2187 −
32528t7

6561 −
23104t8

19683 −
438976t9

531441

(1− q(t))3 − 508t4

81 (1− q(t))

= 1− 5t + 7t2 − 3t3 + 112t5

27 + 2560t6

2187 + 6080t7

6561 −
23104t8

19683 −
438976t9

531441
· · ·
(1− q(t))3 − (508t4

81 + 112t5

27 + 17680t6

2187 )(1− q(t))

= 1− 5t + 7t2 − 3t3 + 106576t7

6561 + 41408t8

6561 + 3592064t9

531441
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N = 3

det(I − A(t)) = (1− q(t))3 − t2α(t) + tβ(t)(1− q(t))

R(t) = (1− q(t))3 − p(t) is not strictly positive, but its first term is.

By including this term in our β(t) we can make higher order terms more
positive.

An algorithm:
By repeatedly taking the lowest ”remainder” term, construct:

b(t) =
3n∑

i=M+1

bi t
i

such that p(t)− (1− q(t))3− b(t)(1− q(t)) has coefficient 0 for all terms
with degree 3n or less.
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N=3

We can calculate the coefficients of b:

bm = 3 [s(t)(1− q(t)− s(t))]m = 3

[
rm +

m−n∑
i=1

ri rm − i

]

Proposition

There exists M such that if we truncate r(t) to order n ≥ M, the
polynomial b(t) has no negative coefficients.

Proof.

Lots of careful approximations of binomial coefficients.
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N=3

Proof (N=3).

Choose n such that the proposition holds, let q(t) be the power series of

p(t) to degree n, and construct b(t) as before.

Let β(t) = b(t)
t

α(t) = (p(t)− (1− q(t))3 − b(t)(1− q(t)))/t2

α(t) has no negative terms since it is just ”leftover” terms of b(t)q(t).

A(t) =

 q(t) α(t) β(t)
0 q(t) t
t 0 q(t)



det(I − A(t)) = (1− q(t))3 − t2α(t) + tβ(t)(1− q(t))

= (1− q(t))3 − (p(t)− (1− q(t))3 − b(t)(1− q(t)))

+ b(t)(1− q(t)) = p(t)
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Further Work

N ≥ 4

General proof

Establish bounds on the degrees of polynomials used in the
polynomial matrix.
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