# Efficient Realization of Nonzero Spetra by Polynomial Matrices

#### Nathan McNew and Nicholas Ormes

University of Denver

November 5th, 2010

Nathan McNew (University of Denver)

Realization of Nonzero Spectra

November 5th, 2010 1 / 26

3

- 1 The Nonnegative Inverse Eigenvalue Problem
- 2 The Boyle Handelman Theorem
- 3 Graphs and Polynomial Matrices
- 4 The Conjecture
- **5** Cases N=1,2,3

イロト 不得下 イヨト イヨト 二日

The **spectrum** of a matrix A,  $sp(A) = (\lambda_1, \lambda_2, \dots, \lambda_n)$  is the set (with multiplicity) of the eigenvalues of the matrix A.

The characteristic polynomial of A is:

$$\chi_A = det(It - A) = \prod_{i=1}^n (t - \lambda_i)$$

The **spectrum** of a matrix A,  $sp(A) = (\lambda_1, \lambda_2, \dots, \lambda_n)$  is the set (with multiplicity) of the eigenvalues of the matrix A.

The characteristic polynomial of A is:

$$\chi_{A} = det(It - A) = \prod_{i=1}^{n} (t - \lambda_{i})$$

#### Problem (Suleimanova, 1949)

Given an n-tuple of complex numbers  $\sigma := (\lambda_1, \lambda_2, \dots, \lambda_n)$  when is  $\sigma$  the spectrum of some  $n \times n$  matrix A with nonnegative entries?

イロト 不得下 イヨト イヨト 二日

The **spectrum** of a matrix A,  $sp(A) = (\lambda_1, \lambda_2, \dots, \lambda_n)$  is the set (with multiplicity) of the eigenvalues of the matrix A.

The characteristic polynomial of A is:

$$\chi_{A} = det(It - A) = \prod_{i=1}^{n} (t - \lambda_{i})$$

#### Problem (Suleimanova, 1949)

Given an n-tuple of complex numbers  $\sigma := (\lambda_1, \lambda_2, \dots, \lambda_n)$  when is  $\sigma$  the spectrum of some  $n \times n$  matrix A with nonnegative entries?

When such a matrix A exists we say A realizes  $\sigma$ , and  $\sigma$  is realizable.

Nathan McNew (University of Denver)

イロト 不得下 イヨト イヨト 二日

A matrix is **primitive** if it is a square matrix and some power of it is a matrix with strictly positive entries.

A matrix is **primitive** if it is a square matrix and some power of it is a matrix with strictly positive entries.

There are several known necessary conditions for  $\sigma$  to be realizable by a primitive matrix:

•  $\exists \lambda_i \in \sigma$  such that  $\lambda_i \in \mathbb{R}_+$  and  $\lambda_i > |\lambda_j| \ j \neq i$ . (Due to the Perron-Frobenius Theorem. We refer to  $\lambda_i$  as the **Perron** eigenvalue or root.)

A matrix is **primitive** if it is a square matrix and some power of it is a matrix with strictly positive entries.

There are several known necessary conditions for  $\sigma$  to be realizable by a primitive matrix:

- $\exists \lambda_i \in \sigma$  such that  $\lambda_i \in \mathbb{R}_+$  and  $\lambda_i > |\lambda_j| \ j \neq i$ . (Due to the Perron-Frobenius Theorem. We refer to  $\lambda_i$  as the **Perron** eigenvalue or root.)
- **2**  $\sigma = \bar{\sigma}$  (For each complex number in  $\sigma$ , its complex conjugate is also in  $\sigma$ .)

イロト 不得下 イヨト イヨト 二日

A matrix is **primitive** if it is a square matrix and some power of it is a matrix with strictly positive entries.

There are several known necessary conditions for  $\sigma$  to be realizable by a primitive matrix:

- $\exists \lambda_i \in \sigma$  such that  $\lambda_i \in \mathbb{R}_+$  and  $\lambda_i > |\lambda_j| \ j \neq i$ . (Due to the Perron-Frobenius Theorem. We refer to  $\lambda_i$  as the **Perron** eigenvalue or root.)
- **2**  $\sigma = \bar{\sigma}$  (For each complex number in  $\sigma$ , its complex conjugate is also in  $\sigma$ .)
- So The kth moment of σ,  $s_k = \sum_{i=1}^n \lambda_i^k \ge 0$ . ∀k ∈ N and if  $s_k > 0$  then  $s_{nk} > 0$  ∀n ∈ N (since  $s_k$  would be the trace of the matrix A<sup>k</sup>)

## Example (n = 2)

Let n = 2,  $\sigma = (\lambda_1, \lambda_2)$ ,  $\lambda_1, \lambda_2 \in \mathbb{R}$  and  $\lambda_1 > |\lambda_2|$ . Then  $\sigma$  is realized by the matrix:

$$A = \frac{1}{2} \begin{bmatrix} \lambda_1 + \lambda_2 & \lambda_1 - \lambda_2 \\ \lambda_1 - \lambda_2 & \lambda_1 + \lambda_2 \end{bmatrix}$$

Nathan McNew (University of Denver)

Realization of Nonzero Spectra

イロト 不得 トイヨト イヨト 二日

## Example (n = 2)

Let n = 2,  $\sigma = (\lambda_1, \lambda_2)$ ,  $\lambda_1, \lambda_2 \in \mathbb{R}$  and  $\lambda_1 > |\lambda_2|$ . Then  $\sigma$  is realized by the matrix:

$$A = \frac{1}{2} \left[ \begin{array}{cc} \lambda_1 + \lambda_2 & \lambda_1 - \lambda_2 \\ \lambda_1 - \lambda_2 & \lambda_1 + \lambda_2 \end{array} \right]$$

Necessary and Sufficient conditions are known only when  $n \leq 3$ .

#### Theorem (Boyle and Handelman, 1991)

Let  $\sigma$  satisfy the previous necessary conditions. Then  $\exists N \in \mathbb{N}$  such that  $\sigma$  augmented by N zeros (ie  $\sigma' = (\lambda_1, \lambda_2, \dots, \lambda_n, 0, \dots, 0)$ ) is realizable by a primitive matrix.

#### Theorem (Boyle and Handelman, 1991)

Let  $\sigma$  satisfy the previous necessary conditions. Then  $\exists N \in \mathbb{N}$  such that  $\sigma$  augmented by N zeros (ie  $\sigma' = (\lambda_1, \lambda_2, \dots, \lambda_n, 0, \dots, 0)$ ) is realizable by a primitive matrix.

Given an n-tuple  $\sigma := (\lambda_1, \lambda_2, \dots, \lambda_n) \ \lambda_i \in \mathbb{C} \setminus \{0\}$  The Boyle Handleman theorem gives the necessary conditions for  $\sigma$  to be the **nonzero spectrum** of some matrix A, but the proof is not constructive, and puts no bounds on the size of this matrix.

## The BH theorem and Characteristic Polynomials

Given a polynomial p(t) the Boyle Handelman theorem specifies when there exists a primitive matrix A and natural number N such that:

$$t^N p(t) = \chi_A(t) = det(It - A) = \prod_{i=1}^n (t - \lambda_i)$$

イロト 不得下 イヨト イヨト 三日

Given a polynomial p(t) the Boyle Handelman theorem specifies when there exists a primitive matrix A and natural number N such that:

$$t^N p(t) = \chi_A(t) = det(It - A) = \prod_{i=1}^n (t - \lambda_i)$$

Alternatively, one can look at:

$$\chi_A^{-1}(t) = det(I - tA) = \prod_{i=1}^n (1 - t\lambda_i).$$

This **reverse characteristic polynomial** does not change as additional zero eigenvalues are added. Thus the Boyle Handelman theorem specifies when a given polynomial is exactly the reverse characteristic polynomial of some matrix A, but puts no bound on the size of A.

Any matrix A over  $\mathbb{R}_+$  can be treated as the adjacency matrix for some directed graph G in which the entry in position (i, j) is the weight of the edge from vertex i to vertex j.

Any matrix A over  $\mathbb{R}_+$  can be treated as the adjacency matrix for some directed graph G in which the entry in position (i, j) is the weight of the edge from vertex i to vertex j. For example:



Any matrix A over  $\mathbb{R}_+$  can be treated as the adjacency matrix for some directed graph G in which the entry in position (i, j) is the weight of the edge from vertex i to vertex j. For example:



G can also be represented by a polynomial matrix M(t) over  $t\mathbb{R}_+[t]$ .

#### **Construction of G from** M(t):

Let M(t) be an  $N \times N$  matrix over  $t\mathbb{R}_+[t]$ .

- Assign N vertices the labels 1,2,...N.
- For each term wt<sup>p</sup> of the polynomial in the (i,j) position of A[t], construct a path of length p from vertex i to j with p-1 new distinct vertices.
- Weight the first edge w and each additional edge 1(if p > 1.)

#### **Construction of G from** M(t):

Let M(t) be an  $N \times N$  matrix over  $t\mathbb{R}_+[t]$ .

- Assign N vertices the labels 1,2,...N.
- For each term wt<sup>p</sup> of the polynomial in the (i,j) position of A[t], construct a path of length p from vertex i to j with p-1 new distinct vertices.
- Solution Weight the first edge w and each additional edge 1(if p > 1.)

In constructing a polynomial matrix from a graph, the weights of consecutive edges through "unimportant" vertices are multiplied to find the term's coefficient.

イロト 不得下 イヨト イヨト 二日

Example:

$$\begin{bmatrix} 5t^3 + 1.5t & 9t^3 & 0\\ \pi t^2 & 0 & 4t^2\\ 2t & 0.3t^2 + t & 3.6t \end{bmatrix}$$

Example:

$$\begin{bmatrix} 5t^3 + 1.5t & 9t^3 & 0\\ \pi t^2 & 0 & 4t^2\\ 2t & 0.3t^2 + t & 3.6t \end{bmatrix}$$

Realization of Nonzero Spectra

Example:





Nathan McNew (University of Denver)

Realization of Nonzero Spectra

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ < Ξ ▶ Ξ</li>
 ✓ Q (

 November 5th, 2010
 10 / 26

Example:

$$\begin{bmatrix} 5t^3 + 1.5t & 9t^3 & 0\\ \pi t^2 & 0 & 4t^2\\ 2t & 0.3t^2 + t & 3.6t \end{bmatrix}$$







Nathan McNew (University of Denver)

Realization of Nonzero Spectra

November 5th, 2010 10 / 26

イロト 不得下 イヨト イヨト 二日

Example:





**Example:** 







 $\chi_{G}(t) = t^{10} - 5.1t^{9} + 5.4t^{8} - 9t^{7} + 22.8t^{6} + (1.8 - 9\pi)t^{5} + (32.4\pi - 52)t^{4} + 6t^{3}$  $\chi_{G}^{-1}(t) = 6t^{7} + (32.4\pi - 52)t^{6} + (1.8 - 9\pi)t^{5} + 22.8t^{4} - 9t^{3} + 5.4t^{2} - 5.1t + 1$ 

Nathan McNew (University of Denver)

November 5th, 2010 11 / 26

< ロ > < 同 > < 三 > < 三 >

#### Theorem

Given two Matricies A over  $\mathbb{R}_+$  and M(t) over  $t\mathbb{R}_+[t]$  that correspond to the same graph G, then:

$$\chi_{\mathcal{M}}^{-1}(t) = det(I - At) = det(I - M(t))$$

#### Proof.

Use row operations on I - At to combine rows/columns along a path, followed by expansion by minors to transform I - At into I - M(t) without changing the determinant.

A graph with nonnegative entries can be used to describe the possible trajectories of a dynamical system (Symbolic Dynamics)

A graph with nonnegative entries can be used to describe the possible trajectories of a dynamical system (Symbolic Dynamics)

In the case of a **Shift of Finite Type**, all of the information about the dynamical system is encoded in its zeta function, which corresponds to the characteristic polynomial of its graph.

A graph with nonnegative entries can be used to describe the possible trajectories of a dynamical system (Symbolic Dynamics)

In the case of a **Shift of Finite Type**, all of the information about the dynamical system is encoded in its zeta function, which corresponds to the characteristic polynomial of its graph.

When is a given polynomial the characteristic polynomial (zeta function) for some shift of finite type?

# A Theorem

#### Theorem

Assume that  $p(t) = \prod_{i=1}^{d} (1 - \lambda_i t)$  where the  $(\lambda_1, \lambda_2, ..., \lambda_d)$  satisfy the conditions:

**1**  $\exists \lambda_i \in \sigma$  such that  $\lambda_i \in \mathbb{R}_+$  and  $\lambda_i > |\lambda_j| \ j \neq i$ .

$$\ \, o = \bar{\sigma}$$

Then there is an  $N \ge 1$  such that the power series expansion for  $p(t)^{1/N}$  is of the form

$$p(t)^{1/N} = 1 - \sum_{k=1}^{\infty} r_k t^k$$

where  $r_k \ge 0$  for all  $k \ge 1$ .

We've reformulated the original, Nonnegative Inverse Eigenvalue Problem into a problem about polynomials and polynomial matrices.

We've reformulated the original, Nonnegative Inverse Eigenvalue Problem into a problem about polynomials and polynomial matrices.

#### The New Problem

Given a polynomial p(t) with p(0) = 1, when does there exist a polynomial matrix  $A(t) \in t\mathbb{R}^+[t]$  such that

$$p(t) = det(I - A(t))$$

This problem is equivalent to the "extended" Nonnegative Inverse Eigenvalue Problem, solved by the Boyle Handelman theorem.

We've reformulated the original, Nonnegative Inverse Eigenvalue Problem into a problem about polynomials and polynomial matrices.

#### The New Problem

Given a polynomial p(t) with p(0) = 1, when does there exist a polynomial matrix  $A(t) \in t\mathbb{R}^+[t]$  such that

$$p(t) = det(I - A(t))$$

This problem is equivalent to the "extended" Nonnegative Inverse Eigenvalue Problem, solved by the Boyle Handelman theorem.

**Our goal:** Reprove the Boyle Handelman theorem in a constructive way, putting some bound on the size of the polynomial matrix necessary to realize a polynomial.

イロト 不得下 イヨト イヨト 二日

#### Conjecture

Let p(t) be a polynomial which satisfies the condition that  $\exists N \ge 1$  such that  $p(t)^{1/N} = 1 - \sum_{k=1}^{\infty} r_k t^k$  where  $r_k \ge 0$  for all  $k \ge 1$ .

Then there exists an  $N \times N$  polynomial matrix M[t] with all nonnegative coefficients such that det(I - M[t]) = p(t).

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Conjecture

Let p(t) be a polynomial which satisfies the condition that  $\exists N \ge 1$  such that  $p(t)^{1/N} = 1 - \sum_{k=1}^{\infty} r_k t^k$  where  $r_k \ge 0$  for all  $k \ge 1$ .

Then there exists an  $N \times N$  polynomial matrix M[t] with all nonnegative coefficients such that det(I - M[t]) = p(t).

As a result of the previous theorems, proving this conjecture would (nearly) reprove the Boyle Handelman Theorem (with the exception of the strengthened third condition.)

#### Conjecture

Let p(t) be a polynomial which satisfies the condition that  $\exists N \ge 1$  such that  $p(t)^{1/N} = 1 - \sum_{k=1}^{\infty} r_k t^k$  where  $r_k \ge 0$  for all  $k \ge 1$ .

Then there exists an  $N \times N$  polynomial matrix M[t] with all nonnegative coefficients such that det(I - M[t]) = p(t).

As a result of the previous theorems, proving this conjecture would (nearly) reprove the Boyle Handelman Theorem (with the exception of the strengthened third condition.)

#### Results so far: This conjecture is true for N=1,2,3.

Trivial. If  $p(t)^1 = 1 - r(t)$  where r(t) has no negative coefficients then the matrix A(t) = [r(t)] suffices.

$$det(I - A(t)) = det([1 - r(t)]) = 1 - r(t) = p(t)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Suppose  $p(t)^{1/2} = 1 - r(t)$  where r(t) has no negative coefficients. Then let q(t) be the polynomial that results when r(t) is truncated to some degree n (greater than or equal to the degree of p(t).)

Consider the polynomial  $(1 - q(t))^2$ . The first "incomplete" term has order n+1, so the first n coefficients match p(t). Let  $R(t) = (1 - q(t))^2 - p(t)$ . Then:

$$R(t) = \sum_{i=n+1}^{2n} \sum_{j+k=i} q_j q_k t^i$$

Since all  $q_j$  and  $q_k$  are nonnegative, R(t) will contain only nonnegative terms.

イロン 不通 とくほ とくま とうほ

## Proof Continued(N=2).

Then construct the matrix:

$$A(t) = \begin{bmatrix} q(t) & \frac{R(t)}{t} \\ t & q(t) \end{bmatrix}$$
$$det(I - A(t)) = (1 - q(t))^2 - R(t) = p(t)$$

Nathan McNew (University of Denver)

Realization of Nonzero Spectra

#### $p(t) = 1 - 3t - 2t^2 + 4t^3$

Nathan McNew (University of Denver)

Realization of Nonzero Spectra

November 5th, 2010 20 / 26

$$p(t) = 1 - 3t - 2t^2 + 4t^3$$
  

$$p(t)^{1/2} = 1 - \frac{3t}{2} - \frac{17t^2}{8} - \frac{19t^3}{16} - \frac{517t^4}{128} - \frac{2197t^5}{256} + \cdots$$

# N=2 Example

$$p(t) = 1 - 3t - 2t^{2} + 4t^{3}$$

$$p(t)^{1/2} = 1 - \frac{3t}{2} - \frac{17t^{2}}{8} - \frac{19t^{3}}{16} - \frac{517t^{4}}{128} - \frac{2197t^{5}}{256} + \cdots$$

$$q(t) = \frac{3t}{2} + \frac{17t^{2}}{8} + \frac{19t^{3}}{16}$$

$$p(t) = 1 - 3t - 2t^{2} + 4t^{3}$$

$$p(t)^{1/2} = 1 - \frac{3t}{2} - \frac{17t^{2}}{8} - \frac{19t^{3}}{16} - \frac{517t^{4}}{128} - \frac{2197t^{5}}{256} + \cdots$$

$$q(t) = \frac{3t}{2} + \frac{17t^{2}}{8} + \frac{19t^{3}}{16}$$

$$(1 - q(t))^{2} = 1 - 3t - 2t^{2} + 4t^{3} + \frac{517t^{4}}{64} + \frac{323t^{5}}{64} + \frac{361t^{6}}{256}$$

$$p(t) = 1 - 3t - 2t^{2} + 4t^{3}$$

$$p(t)^{1/2} = 1 - \frac{3t}{2} - \frac{17t^{2}}{8} - \frac{19t^{3}}{16} - \frac{517t^{4}}{128} - \frac{2197t^{5}}{256} + \cdots$$

$$q(t) = \frac{3t}{2} + \frac{17t^{2}}{8} + \frac{19t^{3}}{16}$$

$$(1 - q(t))^{2} = 1 - 3t - 2t^{2} + 4t^{3} + \frac{517t^{4}}{64} + \frac{323t^{5}}{64} + \frac{361t^{6}}{256}$$

$$R(t) = (1 - q(t))^{2} - p(t) = \frac{517t^{4}}{64} + \frac{323t^{5}}{64} + \frac{361t^{6}}{256}$$

$$p(t) = 1 - 3t - 2t^{2} + 4t^{3}$$

$$p(t)^{1/2} = 1 - \frac{3t}{2} - \frac{17t^{2}}{8} - \frac{19t^{3}}{16} - \frac{517t^{4}}{128} - \frac{2197t^{5}}{256} + \cdots$$

$$q(t) = \frac{3t}{2} + \frac{17t^{2}}{8} + \frac{19t^{3}}{16}$$

$$(1 - q(t))^{2} = 1 - 3t - 2t^{2} + 4t^{3} + \frac{517t^{4}}{64} + \frac{323t^{5}}{64} + \frac{361t^{6}}{256}$$

$$R(t) = (1 - q(t))^{2} - p(t) = \frac{517t^{4}}{64} + \frac{323t^{5}}{64} + \frac{361t^{6}}{256}$$

$$A(t) = \begin{bmatrix} (\frac{3t}{2} + \frac{17t^{2}}{8} + \frac{19t^{3}}{16}) & (\frac{517t^{3}}{64} + \frac{323t^{4}}{64} + \frac{361t^{5}}{256}) \\ (t) & (\frac{3t}{2} + \frac{17t^{2}}{8} + \frac{19t^{3}}{16}) \end{bmatrix}$$

Nathan McNew (University of Denver)

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Idea:

Again, suppose  $p(t)^{1/3} = 1 - r(t)$  where r(t) has no negative coefficients, let q(t) be r(t) truncated to degree n, and let s(t) be the remainder, so r(t) = q(t) + s(t).

$$\mathsf{A}(t) = \left[ egin{array}{ccc} q(t) & lpha(t) & eta(t) \ 0 & q(t) & t \ t & 0 & q(t) \end{array} 
ight]$$

 $det(I - A(t)) = (1 - q(t))^3 - t^2\alpha(t) + t\beta(t)(1 - q(t))$ This time  $R(t) = (1 - q(t))^3 - p(t)$  is not strictly positive.

Nathan McNew (University of Denver)

$$det(I - A(t)) = (1 - q(t))^3 - t^2 \alpha(t) + t\beta(t)(1 - q(t))$$

$$det(I - A(t)) = (1 - q(t))^3 - t^2 \alpha(t) + t\beta(t)(1 - q(t))$$
$$p(t) = 1 - 5t + 7t^2 - 3t^3$$

$$det(I - A(t)) = (1 - q(t))^3 - t^2 \alpha(t) + t\beta(t)(1 - q(t))$$

$$p(t) = 1 - 5t + 7t^2 - 3t^3$$

$$p(t)^{1/2} = 1 - \frac{5t}{2} + \frac{3t^2}{8} - \frac{9t^3}{16} - \frac{189t^4}{128} - \frac{891t^5}{256} \cdots$$

$$det(I - A(t)) = (1 - q(t))^3 - t^2 \alpha(t) + t\beta(t)(1 - q(t))$$

$$p(t) = 1 - 5t + 7t^2 - 3t^3$$

$$p(t)^{1/2} = 1 - \frac{5t}{2} + \frac{3t^2}{8} - \frac{9t^3}{16} - \frac{189t^4}{128} - \frac{891t^5}{256} \cdots$$

$$p(t)^{1/3} = 1 - \frac{5t}{3} - \frac{4t^2}{9} - \frac{76t^3}{81} - \frac{508t^4}{243} - \frac{3548t^5}{729} \cdots$$

$$det(I - A(t)) = (1 - q(t))^3 - t^2 \alpha(t) + t\beta(t)(1 - q(t))$$

$$p(t) = 1 - 5t + 7t^2 - 3t^3$$

$$p(t)^{1/2} = 1 - \frac{5t}{2} + \frac{3t^2}{8} - \frac{9t^3}{16} - \frac{189t^4}{128} - \frac{891t^5}{256} \cdots$$

$$p(t)^{1/3} = 1 - \frac{5t}{3} - \frac{4t^2}{9} - \frac{76t^3}{81} - \frac{508t^4}{243} - \frac{3548t^5}{729} \cdots$$

$$q(t) = \frac{5t}{3} + \frac{4t^2}{9} + \frac{76t^3}{81}$$

Nathan McNew (University of Denver)

November 5th, 2010 22 / 26

$$det(I - A(t)) = (1 - q(t))^3 - t^2 \alpha(t) + t\beta(t)(1 - q(t))$$

$$p(t) = 1 - 5t + 7t^2 - 3t^3$$

$$p(t)^{1/2} = 1 - \frac{5t}{2} + \frac{3t^2}{8} - \frac{9t^3}{16} - \frac{189t^4}{128} - \frac{891t^5}{256} \cdots$$

$$p(t)^{1/3} = 1 - \frac{5t}{3} - \frac{4t^2}{9} - \frac{76t^3}{81} - \frac{508t^4}{243} - \frac{3548t^5}{729} \cdots$$

$$q(t) = \frac{5t}{3} + \frac{4t^2}{9} + \frac{76t^3}{81}$$

$$(1 - q(t))^3 =$$

$$1 - 5t + 7t^2 - 3t^3 + \frac{508t^4}{81} - \frac{1532t^5}{243} - \frac{3536t^6}{2187} - \frac{32528t^7}{6561} - \frac{23104t^8}{19683} - \frac{438976t^9}{531441}$$

$$det(I - A(t)) = (1 - q(t))^3 - t^2 \alpha(t) + t\beta(t)(1 - q(t))$$

$$p(t) = 1 - 5t + 7t^2 - 3t^3$$

$$p(t)^{1/2} = 1 - \frac{5t}{2} + \frac{3t^2}{8} - \frac{9t^3}{16} - \frac{189t^4}{128} - \frac{891t^5}{256} \cdots$$

$$p(t)^{1/3} = 1 - \frac{5t}{3} - \frac{4t^2}{9} - \frac{76t^3}{81} - \frac{508t^4}{243} - \frac{3548t^5}{729} \cdots$$

$$q(t) = \frac{5t}{3} + \frac{4t^2}{9} + \frac{76t^3}{81}$$

$$(1 - q(t))^3 =$$

$$1 - 5t + 7t^2 - 3t^3 + \frac{508t^4}{81} - \frac{1532t^5}{243} - \frac{3536t^6}{2187} - \frac{32528t^7}{6561} - \frac{23104t^8}{19683} - \frac{438976t^6}{531441}$$

$$(1 - q(t))^3 - \frac{508t^4}{81}(1 - q(t))$$

$$= 1 - 5t + 7t^2 - 3t^3 + \frac{112t^5}{27} + \frac{2560t^6}{2187} + \frac{6080t^7}{6561} - \frac{23104t^8}{19683} - \frac{438976t^6}{531441}$$

Nathan McNew (University of Denver)

$$det(I - A(t)) = (1 - q(t))^3 - t^2 \alpha(t) + t\beta(t)(1 - q(t))$$

$$p(t) = 1 - 5t + 7t^2 - 3t^3$$

$$p(t)^{1/2} = 1 - \frac{5t}{2} + \frac{3t^2}{8} - \frac{9t^3}{16} - \frac{189t^4}{128} - \frac{891t^5}{256} \cdots$$

$$p(t)^{1/3} = 1 - \frac{5t}{3} - \frac{4t^2}{9} - \frac{76t^3}{81} - \frac{508t^4}{243} - \frac{3548t^5}{729} \cdots$$

$$q(t) = \frac{5t}{3} + \frac{4t^2}{9} + \frac{76t^3}{81}$$

$$(1 - q(t))^3 =$$

$$1 - 5t + 7t^2 - 3t^3 + \frac{508t^4}{81} - \frac{1532t^5}{243} - \frac{3536t^6}{2187} - \frac{32528t^7}{6561} - \frac{23104t^8}{19683} - \frac{438976t^9}{531441}$$

$$(1 - q(t))^3 - \frac{508t^4}{81} (1 - q(t))$$

$$= 1 - 5t + 7t^2 - 3t^3 + \frac{112t^5}{27} + \frac{2560t^6}{2187} + \frac{6080t^7}{6561} - \frac{23104t^8}{19683} - \frac{438976t^9}{531441}$$

$$\cdots$$

$$(1 - q(t))^3 - (\frac{508t^4}{81} + \frac{112t^5}{27} + \frac{17680t^6}{2187})(1 - q(t))$$

$$= 1 - 5t + 7t^2 - 3t^3 + \frac{106576t^7}{2187} + \frac{41408t^8}{6561} + \frac{3592064t^9}{531441}$$

$$det(I - A(t)) = (1 - q(t))^3 - t^2 \alpha(t) + t\beta(t)(1 - q(t))$$

 $R(t) = (1 - q(t))^3 - p(t)$  is not strictly positive, but its first term is.

$$det(I - A(t)) = (1 - q(t))^3 - t^2 \alpha(t) + t\beta(t)(1 - q(t))$$

 $R(t) = (1 - q(t))^3 - p(t)$  is not strictly positive, but its first term is. By including this term in our  $\beta(t)$  we can make higher order terms more positive.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$det(I - A(t)) = (1 - q(t))^3 - t^2 \alpha(t) + t\beta(t)(1 - q(t))$$

 $R(t) = (1 - q(t))^3 - p(t)$  is not strictly positive, but its first term is. By including this term in our  $\beta(t)$  we can make higher order terms more positive.

#### An algorithm:

By repeatedly taking the lowest "remainder" term, construct:

$$b(t) = \sum_{i=M+1}^{3n} b_i t^i$$

such that  $p(t) - (1 - q(t))^3 - b(t)(1 - q(t))$  has coefficient 0 for all terms with degree 3n or less.

We can calculate the coefficients of *b*:

$$b_m = 3[s(t)(1 - q(t) - s(t))]_m = 3\left[r_m + \sum_{i=1}^{m-n} r_i r_m - i\right]$$

We can calculate the coefficients of *b*:

$$b_m = 3[s(t)(1-q(t)-s(t))]_m = 3\left[r_m + \sum_{i=1}^{m-n} r_i r_m - i\right]$$

#### Proposition

There exists M such that if we truncate r(t) to order  $n \ge M$ , the polynomial b(t) has no negative coefficients.

イロト 不得下 イヨト イヨト 二日

We can calculate the coefficients of *b*:

$$b_m = 3[s(t)(1-q(t)-s(t))]_m = 3\left[r_m + \sum_{i=1}^{m-n} r_i r_m - i\right]$$

#### Proposition

There exists M such that if we truncate r(t) to order  $n \ge M$ , the polynomial b(t) has no negative coefficients.

#### Proof.

Lots of careful approximations of binomial coefficients.

Nathan McNew (University of Denver)

Realization of Nonzero Spectra

November 5th, 2010 24 / 26

イロト 不得下 イヨト イヨト 二日

Choose n such that the proposition holds, let q(t) be the power series of p(t) to degree n, and construct b(t) as before.

Choose n such that the proposition holds, let q(t) be the power series of p(t) to degree n, and construct b(t) as before. Let  $\beta(t) = \frac{b(t)}{t}$ 

Choose n such that the proposition holds, let q(t) be the power series of p(t) to degree n, and construct b(t) as before. Let  $\beta(t) = \frac{b(t)}{t}$ 

$$\alpha(t) = (p(t) - (1 - q(t))^3 - b(t)(1 - q(t)))/t^2$$

 $\alpha(t)$  has no negative terms since it is just "leftover" terms of b(t)q(t).

Choose n such that the proposition holds, let q(t) be the power series of p(t) to degree n, and construct b(t) as before. Let  $\beta(t) = \frac{b(t)}{t}$ 

$$\alpha(t) = (p(t) - (1 - q(t))^3 - b(t)(1 - q(t)))/t^2$$

 $\alpha(t)$  has no negative terms since it is just "leftover" terms of b(t)q(t).

$$egin{aligned} \mathcal{A}(t) = \left[ egin{array}{ccc} q(t) & lpha(t) & eta(t) \\ 0 & q(t) & t \\ t & 0 & q(t) \end{array} 
ight] \end{aligned}$$

$$det(I - A(t)) = (1 - q(t))^3 - t^2 \alpha(t) + t\beta(t)(1 - q(t))$$
  
=  $(1 - q(t))^3 - (p(t) - (1 - q(t))^3 - b(t)(1 - q(t)))$   
+  $b(t)(1 - q(t)) = p(t)$ 

- *N* ≥ 4
- General proof
- Establish bounds on the degrees of polynomials used in the polynomial matrix.

イロト 不得下 イヨト イヨト 二日