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Abstract

A theorem of Boyle and Handelman gives the necessary and sufficient conditions for

an n-tuple of nonzero complex numbers to be the nonzero spectrum of some matrix

with nonnegative entries, but is not constructive and puts no bound on the necessary

dimension of the matrix. We look instead at polynomial matrices and attempt to

reprove the Boyle Handelman theorem in a constructive way, with a bound on the

size of the polynomial matrix required to realize a given polynomial.
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Chapter 1

Introduction

In 1949 KR Suleimanova[4] posed the question: Given an n − tuple of complex

numbers σ := (λ1, λ2, · · ·λn) when is σ the spectrum of some n × n matrix A with

nonnegative entries? (ie det(I − At) =
∏n

i=1(t − λi)) This problem has come to

be known as the Nonnegative Inverse Eigenvalue Problem. When such a matrix A

exists we say that A realizes σ. [2]

A matrix is primitive if it is a square matrix and some power of it is a ma-

trix with strictly positive entries. The Nonnegative Inverse Eigenvalue Problem is

generally studied in terms of primitive matrices, and given the conditions for an

n − tuple to be realized by a primitive matrix, they can be easily extended to the

general case. There are several known necessary conditions for σ to be realizable by

a primitive matrix:

1. ∃λi ∈ σ such that λi ∈ R+ and λi > |λj | j 6= i.

2. σ = σ̄ (For every complex number in σ, its complex conjugate is also in σ.

3. The kth moment of σ, sk =
∑n

i=1 λk
i ≥ 0. ∀k ∈ N and if sk > 0 then snk >

0 ∀n ∈ N

The first condition comes as a result of the Perron-Froebenius theorem which
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states that a primitive matrix A must have such an eigenvalue. The second is

simply a result of the fact that in order for det(ItA) to have real coefficients any

complex roots must come in conjugate pairs. Finally, the third condition is found

from looking at the trace of Ak which is non-negative, and if Ak has a positive trace,

then Ank does as well.

As a result of the second condition, the problem can be reformulated as: Given

a polynomial p(t) ∈ R[t] then is there a matrix A such that p(t) is the characteristic

polynomial of A? (ie p(t) = det(It − A)) =
∏n

i=1(t − λi) In this case σ is the set

of the roots of the polynomial, and the roots must still satisfy the first and third

conditions.

Boyle and Handelman proved in 1991[1] that as long as the above conditions

are fulfilled then there exists an N such that the set σ augmented by N zeros can

be realized by a nonnegative primitive matrix. (A matrix is primitive if it is a

square nonnegative matrix, and some power of it is strictly positive) The proof is

not constructive however, and does not give any bounds on the size of N however,

and thus puts no restriction on the size of the matrix.[3]

In terms of polynomials the Boyle Handelman theorem states that given a poly-

nomial p(t) ∈ R[t] then there is an integer N and a matrix A such that tNp(t) is the

characteristic polynomial of A. Alternatively one can look at q(t) = det(I − tA) =∏n
i=1(1 − λit) in which case the roots of q(t) are 1/λi. In this case, the Boyle Han-

delman theorem answer’s the question: Given a polynomial q(t) ∈ tR[t] when does

there exist a matrix A such that det(I − tA) = q(t)?
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Chapter 2

Graphs and Polynomial

Matrices

Let G be a weighted directed graph on N vertices with weights in R+. Then the ad-

jacency matrix M of G is the N×N matrix in which the (i, j) element is the weight

of the edge running from vertex i to vertex j. The characteristic polynomial of

this matrix (and of the associated graph G) is the polynomial χM (t) = det(It−M).

The reverse characteristic polynomial of the graph is the polynomial χ−1
M (t) =

det(I − Mt). Note that χ−1
M (t) = tNχM (t−1) (where M is an N × N matrix)

As we will show, the directed graph G can also be represented by a polynomial

matrix A[t] over tR+[t]. (Thus the entries of A will consist of polynomials with

non-negative coefficients without constant terms besides 0).

Construction of G: Given an N × N Polynomial Matrix A(t) over tR+[t] the

corresponding directed graph G can be constructed as follows: Assign N vertices

the labels 1, 2, ...N . Then for each term antp in the polynomial in the (i, j) position

of A(t), construct a path of length p from vertex i to vertex j, in which the first

edge is weighted an, and each additional edge (if p > 1) is weighted 1. If p > 1

then the p − 1 additional vertices in the new path are disjoint from the original N
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vertices and from vertices used in any other path.

Example 2.0.1. Take for example the following arbitrarily chosen polynomial ma-

trix over tR+[t]: 
5t3 + 1.5t 9t3 0

πt2 0 4t2

2t 0.3t2 + t 3.6t


From this matrix, by the method described above we can construct the graph

below: (Large squares denote the primary vertices, diamonds denote secondary, con-

necting vertices)
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Having constructed this graph, we can now construct in the normal way an adjacency

matrix for the graph:



0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 5 1.5 9 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 2 0 3.6 0 0.3 0 0 1

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 π 0 0 4 0
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And compute both the characteristic and reverse characteristic polynomials of this adjacency

matrix and graph:

χG(t) = t10 − 5.1t9 + 5.4t8 − 9t7 + 22.8t6 − (9π + 1.8)t5 + (32.4π − 52)t4 + 6.0t3

χ−1
G (t) = 6t7 + (32.4π − 52)t6 − (9π + 1.8)t5 + 22.8t4 − 9t3 + 5.4t2 − 5.1t + 1

A matrix can be similarly constructed from a graph, in which chains of vertices

with both in and out degree one (meaning there is exactly one edge directed towards

the vertex and exactly one edge leaving the vertex) correspond to a term with

exponent the length of the chain, and coefficient equal to the product of the weights

of paths along the chain.

Theorem 2.0.2. Given two matricies M over R+ and A(t) over tR+[t] that corre-

spond to the same graph G, then:

χ−1
M (t) = det(I − Mt) = det(I − A[t])

Proof. For any i, j such that A(t)i,j is a polynomial of degree greater than 1, then

for each term ai,j,ntn, n > 1 and ai,j,n > 0 there is a path in the graph from vertex

i to vertex j of length n, and thus n + 1 rows (indexed k1 ... kn+1) in the matrix M

corresponding to each of the n+1 vertices along this path. (Note that k1 corresponds

to vertex i in A(t) and kn+1 corresponds to vertex j) Each of these rows and columns

(except k1 and kn+1) will have only one nonzero term, in the (kh, kh+1) position and

ai,j,n =
∏n

h=1 Mkh,kh+1
.

Each of these additional n−1 rows can be removed from the matrix I−Mt with-

out changing the determinant by the following row operations, working backwards

from h = n to 2:

1. Subtract row kh scaled by the entry in position (kh−1, kh) from row kh − 1.
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2. Subtract from column kn+1Column kh is multiplied by the entry in position

(kh, kn+1).

This sequence results in the product of the terms in positions (kh−1, kh) and

(kh, kn+1) appearing in position (kh−1, kn+1) and only a 1 remaining in both row

and column kh. Thus after repeating this process for all the intermediate nodes,

there will be a term equivalent to the product of their weights times t raised to the

length of the chain added to the (k1, kn+1) position, and a 1 in the primary diagonal

for each row/column associated with each intermediate node. The determinant can

be expanded by minors at each of these 1s, thus reducing the size of the matrix.

Repeating this process for each such ai,j,n term in I −A(t) (and switching rows

as necessary at the end) will produce the matrix I − A(t) from I − Mt without

changing the determinant.
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Chapter 3

Our Approach

Our approach is to study the Nonnegative Inverse Eigenvalue Problem and specif-

ically the Boyle Handelman Theorem in terms of polynomial matrices rather than

matrices over R+. Since there is currently no known bound on the number of zeros

that must be appended to the set of complex numbers to be realized by the Boyle

Handelman theorem, there is no known “efficient construction” (In terms of size) of

a matrix over R+ that realizes a polynomial which satisfies the necessary conditions.

We attempt, rather, to reprove the Boyle Handelman conjecture by construct-

ing an “efficient” polynomial matrix (in terms of the size of the matrix, without

any bound on the degree of polynomials used in that matrix) that realizes a given

polynomial. If we were able to bound both the size of the matrix and the degree of

the polynomials used then we would be able to bound the size of the corresponding

matrix over R+. Here we focus only on trying to bound the size of the polynomial

matrix and make no attempt to control the degrees of the polynomials. In this

vein we will make use of polynomials which are truncations of the power series for

p(t)1/N .

By strengthening the third of the necessary conditions so that ∀k ∈ N, sk > 0

we have the following important result:
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Theorem 3.0.3. Assume that p(t) =
∏d

i=1 (1 − λit) where the (λ1, λ2, . . . , λd) sat-

isfy the necessary conditions and the strengthened third condition above. Then there

is an N ≥ 1 such that the power series expansion for p(t)1/N is of the form

p(t)1/N = 1 −
∞∑

k=1

rkt
k

where rk ≥ 0 for all k ≥ 1.

Proof. Write:

p(t) =
d∏

i=1

(1 − λit)

Recall that the power series expansion for (1 − t)1/N is given by:

(1 − t)1/N =
∞∑

k=0

(
1/N

k

)
tk

Where: (
1/N

k

)
=

1/N(1/N − 1)(1/N − 2) · · · (1/N − k + 1)
k(k − 1)(k − 2) · · · 1

Then:

p(t)1/N =
d∏

i=1

(1 − λit)
1/N

=
d∏

i=1

( ∞∑
k=0

(
1/N

k

)
(−λi)ktk

)

=
d∏

i=1

(
1 −

∞∑
k=1

∣∣∣∣(1/N

k

)∣∣∣∣λk
i t

k

)

The kth coeffcient of this looks like

rk =
∣∣∣∣(1/N

k

)∣∣∣∣ (λk
1 + λk

2 + · · · + λk
d

)
+
∑

(−1)l

∣∣∣∣(1/N

k1

)(
1/N

k2

)
· · ·
(

1/N

kd

)∣∣∣∣λk1
i1

λk2
i2
· · ·λkd

d

Where the second sum ranges over combinations of ki ≥ 0 such that k1 + k2 + · · ·+
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kd = k, l ≥ 2 is the count of nonzero ki, and ki1 , ki2 · · · kil are these nonzero values.

Factoring out
∣∣∣(1/N

k

)∣∣∣λk
1 (and assuming that λ1 is the perron eigenvalue) The

first term becomes

1 +
(

λ2

λ1

)k

+ · · · +
(

λd

λ1

)k

which approaches 1 as k → ∞ and is always positive (by BH+). Therefore, this

term has a uniform lower bound δ > 0 (which does not depend on k or N).

The absolute value of the second term is at most

∑∣∣∣∣∣
(1/N

k1

)(1/N
k2

)
· · ·
(1/N

kd

)(1/N
k

) ∣∣∣∣∣
∣∣∣∣λ1

λ1

∣∣∣∣k1
∣∣∣∣λ2

λ1

∣∣∣∣k2

· · ·
∣∣∣∣λd

λ1

∣∣∣∣kd

Now for l ≥ 2 and N ≥ 2:

∣∣∣∣∣∣
( 1

N
k1

)( 1
N
k2

)
· · ·
( 1

N
kd

)
( 1

N
k

)
∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
( 1

N
( 1

N
−1)···( 1

N
−k1+1)

k1!

)( 1
N

( 1
N
−1)···( 1

N
−k2+1)

k2!

)
· · ·
( 1

N
( 1

N
−1)···( 1

N
−kd+1)

kd!

)
( 1

N
( 1

N
−1)···( 1

N
−k+1)

k!

)
∣∣∣∣∣∣∣

=

∣∣∣∣∣
(

1
N

)l−1( k!
k1!k2! · · · kd!

)(
( 1

N −1) · · · ( 1
N −k1+1)

)
· · ·
(
( 1

N −1) · · · ( 1
N −kd+1)

)(
( 1

N − 1) · · · ( 1
N − k + 1

) ∣∣∣∣∣
<

∣∣∣∣∣
(

1
N

)l−1( k!
k1!k2! · · · kd!

)
(ki1 − 1)!(ki2 − 1)! · · · (kil − 1)!

(k − 1)!

∣∣∣∣∣
=

∣∣∣∣∣
(

1
N

)l−1( k

ki1ki2 · · · kil

)∣∣∣∣∣
=
∣∣∣∣( 1

N

)(
k

ki1ki2 · · · kilN
l−2

)∣∣∣∣
(ki1ki2 · · · kilN

l−2) is minimized when l = 2 and ki1 = k − 1

<

∣∣∣∣( 1
N

)(
k

k − 1

)∣∣∣∣
<

2
N
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and that

∑∣∣∣∣λ1

λ1

∣∣∣∣k1
∣∣∣∣λ2

λ1

∣∣∣∣k2

· · ·
∣∣∣∣λd

λ1

∣∣∣∣kd

<

 1

1 −
∣∣∣λ2
λ1

∣∣∣
 1

1 −
∣∣∣λ3
λ1

∣∣∣
 · · ·

 1

1 −
∣∣∣λd
λ1

∣∣∣
 = M

by expanding the right hand side into a product of geometric series. Therefore,

there is a uniform upper bound of the form 2
N M where M does not depend on k or

N .

Then all we need to do is choose N such that δ > 2
N M

Using this result we make the following conjecture:

Conjecture 1. Let p(t) be a polynomial which satisfies the condition that ∃N ≥ 1

such that p(t)1/N = 1 −
∑∞

k=1 rkt
k where rk ≥ 0 for all k ≥ 1. Then there exists an

N×N polynomial matrix A(t) with all nonnegative coefficients such that det(I−A(t))

= p(t).

As a result of Theorems 1 and 2, proving this conjecture would be (nearly)

equivalent to proving the Boyle Handelman theorem (with the exception of the

strengthening of the third condition in Theorem 2.) Unlike the Boyle Handelman

result, the proof that we are working on would be constructive, and would have a

bound on the size of the polynomial matrix required to realize a given polynomial.

Without putting a bound on the degree of the polynomial matrix, however, this

conjecture does not establish any bounds on the size of the regular matrix over R+.

If, however, the size of the polynomial matrix and the degrees of polynomials used in

the matrix could both be bounded, then a bound on the size of the realizing regular

matrix could be achieved.

At the moment we are able to prove the above conjecture for the cases N = 1, 2, 3.
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Chapter 4

Cases N = 1, 2

Case 1 (Proof (N=1)). Trivial. If p(t)1 = 1− r(t) where r(t) has no negative coef-

ficients then the matrix A(t) = [r(t)] suffices.

det(I − A(t)) = det([1 − r(t)]) = 1 − r(t) = p(t)

Case 2 (Proof (N=2)). Suppose p(t)1/2 = 1 − r(t) where r(t) has no negative

coefficients. Then let q(t) be the polynomial that results when r(t) is truncated to

degree n (n greater than or equal to the degree of p(t).) Consider the polynomial

(1 − q(t))2.

The first n coefficients of this polynomial will match p(t). Let R(t) = (1 − q(t))2 −

p(t). Then R(t) will be a polynomial with lowest order term of degree n+1 and

highest degree of 2n, and is described by:

R(t) =
2n∑

i=n+1

∑
j+k=i

qjqkt
i

Where qi is the coefficient of of the ti term in q(t). Since all qi are nonnegative,

R(t) will contain only nonnegative terms.
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Then construct the matrix:

A(t) =

 q(t) R(t)
t

t q(t)



det(I − A(t)) = (1 − q(t))2 − R(t) = p(t)

Example 4.0.4 (N = 2). Consider the polynomial p(t) = 1 − 3t − 2t2 + 4t3

The power series of p(t)1/2 is: p(t)1/2 = 1 − 3t
2 − 17t2

8 − 19t3

16 − 517t4

128 − 2197t5

256 + · · ·

Let q(t) = 3t
2 + 17t2

8 + 19t3

16

Then (1 − q(t))2 = 1 − 3t − 2t2 + 4t3 + 517t4

64 + 323t5

64 + 361t6

256

and R(t) = (1 − q(t))2 − p(t) = 517t4

64 + 323t5

64 + 361t6

256

We can then construct the matrix A(t) as described above:

A(t) =

 (3t
2 + 17t2

8 + 19t3

16 ) (517t3

64 + 323t4

64 + 361t5

256 )

(t) (3t
2 + 17t2

8 + 19t3

16 )


and A(t) realizes the original polynomial p(t) = 1 − 3t − 2t2 + 4t3.

12



Chapter 5

The case N=3

The N = 3 case extends the ideas used in the N = 2 case, but is more complex since

the ”left over” terms of the (1 − q(t))3 term cannot be assumed to be all positive.

In this case we work with the matrix:

A(t) =


q(t) α(t) β(t)

0 q(t) t

t 0 q(t)


Where again q(t) is assumed to be some truncation of the power series r(t) =

1 − p(t)1/3 of degree n at least as great as the degree of p(t), although in this case

a degree higher than that of p(t) may be necessary. In this case:

det(I − A(t)) = (1 − q(t))3 − t2α(t) − tβ(t)(1 − q(t))

Were R(t) = p(t) − (1 − q(t))1/3 strictly positive then this remainder could be

accommodated by the α(t) term as in the N = 2 case, and the β(t) term would not

be needed, however this is never the case. Consider the highest order term of R(t).

This term (of degree 3n) will be have coefficient (−qn)3 where qn is the coefficient

multiplying the tn term in q(t). Thus R(t) will necessarily contain at least 1 negative
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coefficient, and in practice it usually has many more.

On the other hand it is easy to show that the lowest order term of R(t) will

always be positive: Since this term is of order n + 1, greater than the order of p(t),

the coefficient of the term of order n + 1 in the polynomial (1 − r(t))3 = p(t) must

be 0. The only term “missing” of order n+1 when expanding (1−q(t)) is 3(−rn+1).

Since this term is negative, the corresponding term in R(t) must be positive.

Since negative terms exist in R(t), the β(t) polynomial term must be used. Any

term bmtm in β(t) is multiplied by t(1 − q(t)) in the determinant of A(t) and thus

has the effect of decreasing the (m + 1)th coefficient of (1 − q(t))3 − tβ(t)(1 − q(t))

and increasing the (m+2)th through (m+n+1)th coefficients. The end goal when

constructing this β(t) polynomial is to result in a remainder polynomial A(t) =

(1 − q(t))3 − tβ(t)(1 − q(t)) − p(t) which has all positive coefficients.

To this end, we can take the lowest order term of R(t), which we know to be

positive, and include it in β(t). This is in a sense the largest that this coefficient

of β(t) can be, any larger and a negative term would result in A(t), but it also

provides the maximum benefit in terms of increasing the coefficients of terms with

higher powers. If the next lowest order term of the resulting A(t) is also positive then

we can repeat the process, including this term in β(t) as well. This process can be

continued either until a negative coefficient is reached, or until the entire remaining

A(t) is positive. (Success) In the case that a negative coefficient is reached, one can

try again with a larger n, ie using a q(t) with a greater number of terms from the

power series of p(t)1/3.

As an example:

Example 5.0.5 (N=3). Let p(t) = 1 − 5t + 7t2 − 3t3

p(t)1/2 = 1 − 5t

2
+

3t2

8
− 9t3

16
− 189t4

128
− 891t5

256
· · ·

14



We cannot use a 2 × 2 matrix since the power series of p(t)1/2 is not of the correct

form. The power series of p(t)1/3 is of the correct form, however:

p(t)1/3 = 1 − 5t

3
− 4t2

9
− 76t3

81
− 508t4

243
− 3548t5

729
· · ·

We let q(t) be this power series truncated to 3 terms:

q(t) =
5t

3
+

4t2

9
+

76t3

81

(1−q(t))3 = 1−5t+7t2−3t3+
508t4

81
−1532t5

243
−3536t6

2187
−32528t7

6561
−23104t8

19683
−438976t9

531441

Only the first term of R(t) is positive:

R(t) = +
508t4

81
− 1532t5

243
− 3536t6

2187
− 32528t7

6561
− 23104t8

19683
− 438976t9

531441

Including this term as the first term in β(t)

(1−q(t))3−508t4

81
(1−q(t)) = 1−5t+7t2−3t3+

112t5

27
+

2560t6

2187
+

6080t7

6561
−23104t8

19683
−438976t9

531441

Thus we now have an additional positive term which can be included in β(t). Re-

peating this process twice more we eventually get:

(1−q(t))3−
(

508t4

81
+

112t5

27
+

17680t6

2187

)
(1−q(t)) = 1−5t+7t2−3t3+

106576t7

6561
+

41408t8

6561
+

3592064t9

531441

which is p(t) plus a polynomial with only positive coefficients, which can then be

chosen to be α(t) in the matrix. Bringing all of these polynomials together we can
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construct the matrix:

A(t) =


5t
3 + 4t2

9 + 76t3

81
106576t5

6561 + 41408t6

6561 + 3592064t7

531441
508t3

81 + 112t4

27 + 17680t5

2187

0 5t
3 + 4t2

9 + 76t3

81 t

t 0 5t
3 + 4t2

9 + 76t3

81


such that A(t) realizes the original polynomial p(t).

At this point in our research a computer program was written which ran through

the steps of this “greedy algorithm” to determine whether such a matrix could be

constructed for trial polynomials, p(t) which satisfied the condition that the power

series of p(t)1/3 − 1 had all negative coefficients. All cubic polynomials with integer

coefficients less than 100 were tested and no counter examples were found.

The goal of this algorithm can be reformulated instead as constructing a poly-

nomial b(t),

b(t) =
3n∑

i=M+1

bit
i

such that p(t)− (1− q(t))3 + b(t)(1− q(t)) has coefficient 0 for all terms with degree

3n or less. Then if b(t) has only positive terms, the realizing matrix can be easily

constructed. In the following propositions we demonstrate that it is always possible

to construct such a b(t) with all positive coefficients.

First, we note the following:

Proposition 5.0.6. Let p(t)1/3 = 1−r(t) = 1−q(t)−s(t), where q(t) is polynomial

of degree n, equal to the power series r(t) truncated to degree n, and s(t) is a power

series consisting of the remaining terms in r(t). Then

bm = 3 [s(t)(1 − q(t) − s(t))]m

16



Proof. By the construction of b(t), ∀m < 3n

[
p(t) − (1 − q(t))3 + b(t)(1 − q(t))

]
m

= 0

[b(t)(1 − q(t))]m =
[
(1 − q(t))3 − p(t)

]
m

p(t) = [1 − q(t) − s(t)]3 = (1 − q(t))3 − 3s(t)(1 − q(t))2 + 3s(t)2(1 − q(t)) − s(t)3

Plugging this expression in for p(t) above:

[b(t)(1 − q(t))]m =
[
3s(t)(1 − q(t))2 − 3s(t)2(1 − q(t)) + s(t)3

]
m

The lowest order term of s(t)3 will have degree 3n+3, so this term can be dropped:

[b(t)(1 − q(t))]m =
[
3s(t)(1 − q(t))2 − 3s(t)2(1 − q(t))

]
m

= [(1 − q(t))3(s(t))((1 − q(t)) − s(t))]m

= [(1 − q(t)) [3(s(t))((1 − q(t) − s(t))]]m

Thus

[b(t)]m = bm = 3 [(s(t))((1 − q(t) − s(t))]m

Alternatively, we can write this result in terms of r(t) as:

bm = 3 [s(t)(1 − q(t) − s(t))]m = 3

[
rm +

m−n∑
i=1

rirm−i

]

Proposition 5.0.7. Assume p(t) satisfies the Boyle Handelman conditions, as well

as our strengthened third condition, that λ1 is the perron root of p(t) and p(t)1/3 =

17



1 − r(t). A good estimate of the coefficients rn of r(t) is

∣∣∣∣(1/3
n

)∣∣∣∣λn
1 (a(1/λ1))1/3

where a(t) is the polynomial

a(t) =
p(t)

1 − λ1t

and λ1 is the Perron root of p(t). By a “good estimate” we mean that

lim
n→∞

rn∣∣∣(1/3
n

)∣∣∣λn
1 (a(1/λ1))1/3

= 1

Proof.

Subclaim 1. Let ε > 0 be given. Then there exists an N > 0 such that for any

n > N and for any 0 < j < n,

∣∣∣∣∣
(

1/3
n−j

)(
1/3
n

) ∣∣∣∣∣ < n

n − j
(1 + ε)j

Proof. First note that

∣∣∣∣∣
(

1/3
n−j

)(
1/3
n

) ∣∣∣∣∣ =
∣∣∣∣∣∣∣
( 1

3
( 1
3
−1)···( 1

3
−(n−j−1))

(n−j)!

)
( 1

3
( 1
3
−1)···( 1

3
−(n−1))

n!

)
∣∣∣∣∣∣∣

=

∣∣∣∣∣ n!
(n − j)!

1
((1

3 − (n − j))(1
3 − (n − j + 1)) · · · (1

3 − (n − 1)))

∣∣∣∣∣
=

n!
(n − j)!

1∣∣∣1−3(n−j)
3

∣∣∣ ∣∣∣1−3(n−j+1)
3

∣∣∣ · · · ∣∣∣1−3(n−1)
3

∣∣∣
=

n!
(n − j)!

1

(n − j)
∣∣∣1 − 1

3(n−j)

∣∣∣ (n − j + 1)
∣∣∣1 − 1

3(n−j+1)

∣∣∣ · · · (n − 1)
∣∣∣ 1
3(n−1)

∣∣∣
=

n

n − j

j∏
k=1

1
1 − 1

3(n−k)

.

18



and

log j

√√√√ j∏
k=1

1
1 − 1

3(n−k)

=
1
j

j∑
k=1

log

(
1

1 − 1
3(n−k)

)

Since the terms 1
1− 1

3(n−k)

increase with k,

0 <
1
j

j∑
k=1

log

(
1

1 − 1
3(n−k)

)

≤ 1
n − 1

n−1∑
k=1

log

(
1

1 − 1
3(n−k)

)

=
1

n − 1

n−1∑
k=1

log

(
1

1 − 1
3k

)

The last expression above is the average of the first n − 1 terms of the form

log
(

1
1− 1

3k

)
. Since these terms tend to 0 as k → ∞, the average of them does

as well. Thus there exists an N such that ∀n ≥ N

1
n − 1

n−1∑
k=1

log

(
1

1 − 1
3k

)
< log(1 + ε)

and for n ≥ N and for any 1 < j < n,

log j

√√√√ j∏
k=1

1
1 − 1

3(n−k)

< log(1 + ε)

Therefore
j∏

k=1

1
1 − 1

3(n−k)

< (1 + ε)j

and ∣∣∣∣∣
(

1/3
n−j

)(
1/3
n

) ∣∣∣∣∣ < n

n − j
(1 + ε)j

Subclaim 2. Let ε > 0 be given and fix K > 0. There exists an N > K such that
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for any n > N and for any 0 < j < K,

1 <

∣∣∣∣∣
(

1/3
n−j

)(
1/3
n

) ∣∣∣∣∣ < 1 + ε

Proof. let ε1 = (1 + ε)
1

k+1 − 1

Then by Subclaim 1 there exists an N1 > K such that ∀n ≥ N1 and for every

0 < j < K < N1

∣∣∣∣∣
(

1/3
n−j

)(
1/3
n

) ∣∣∣∣∣ < n

n − j
(1 + ε1)j ≤ n

n − K
(1 + ε1)K

Since limn→∞
n

n−K = 1 There exists N2 such that ∀n ≥ N2

n

n − K
≤ (1 − ε1)

Let N = max(N1, N2). Then ∀n ≥ N and 0 < j < K

∣∣∣∣∣
(

1/3
n−j

)(
1/3
n

) ∣∣∣∣∣ < n

n − K
(1 + ε1)K < (1 + ε1)(1 + ε1)K = (1 + ε1)K+1 = (1 + ε)

We use these two subclaims to show that given ε > 0 there exists an N such

that ∀n > N ∣∣∣∣∣∣ rn∣∣∣(1/3
n

)∣∣∣λn
1a(1/λ1)1/3

− 1

∣∣∣∣∣∣ < ε

Let α(t) = 1 +
∑∞

i=1 αit
i denote the power series expansion for a(t)1/3 = (p(t)/(1−

λ1t))1/3 at t = 0. Then

p(t)1/3 = 1 − r(t) = (1 − λ1t)1/3α(t) =

(
1 −

∞∑
i=1

∣∣∣∣(1/3
i

)∣∣∣∣λi
1t

i

)(
1 +

∞∑
i=1

αit
i

)
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We can then write rn as

rn =
∣∣∣∣(1/3

n

)∣∣∣∣λn
1 − αn +

n−1∑
k=1

∣∣∣∣( 1/3
n − k

)∣∣∣∣αkλ
n−k
1

=
∣∣∣∣(1/3

n

)∣∣∣∣λn
1

1 +
n−1∑
k=1

∣∣∣∣∣
( 1/3
n−k

)(
1/3
n

) ∣∣∣∣∣αkλ
−k
1 − αn∣∣∣(1/N

n

)∣∣∣λ−n
1



Let δ = εa(1/λ1)1/3

5 .

If λ2 is the root of a(t) = p(t)/(1 − λ1t) with the greatest modulus (ie ∀λi roots

of a(t), |λ2| ≥ |λi|) then the power series α(t) = a(t)1/3 has radius of convergence

1/ |λ2| which is greater than 1/λ1. Now for some K > 0 and n > K1 we can write

1 +
n−1∑
k=1

∣∣∣∣∣
( 1/3
n−k

)(
1/3
n

) ∣∣∣∣∣αkλ
−k
1 − sn∣∣∣(1/3

n

)∣∣∣λ−n
1 = a(1/λ1)1/3 (5.0.1)

+

(
1 +

K∑
k=1

αkλ
−k
1 − a(1/λ1)1/3

)
(5.0.2)

+
K∑

k=1

(∣∣∣∣∣
( 1/3
n−k

)(
1/3
n

) ∣∣∣∣∣− 1

)
αkλ

−k
1 (5.0.3)

+
n−1∑

k=K+1

∣∣∣∣∣
( 1/3
n−k

)(
1/3
n

) ∣∣∣∣∣αkλ
−k
1 (5.0.4)

− αn∣∣∣(1/3
n

)∣∣∣λ−n
1 (5.0.5)

We can now make each of the terms (5.0.2) through (5.0.5) small as follows:

(5.0.2): Since 1/λ1 lies in the radius of convergence of α(t), 1 +
∑K1

k=1 αkλ
−k
1 con-

verges to a(1/λ1)1/3 So for some K1 > 0,

∣∣∣∣∣1 +
K1∑
k=1

αkλ
−k
1 − a(1/λ1)1/3

∣∣∣∣∣ < δ
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(5.0.4) is less than
n−1∑

k=K+1

∣∣∣∣∣
( 1/3
n−k

)(
1/3
n

) ∣∣∣∣∣ |αk|λ−k
1

Fix ε2 such that 1+ε2
λ1

< 1
|λ2|

Then by Subclaim 1 there exists a K2 such that ∀n > K2 and j < n

∣∣∣∣∣
(

1/3
n−j

)(
1/3
n

) ∣∣∣∣∣ < n

n − j
(1 + ε)j

Then ∀n > K2

n−1∑
k=K2+1

∣∣∣∣∣
( 1/3
n−k

)(
1/3
n

) ∣∣∣∣∣ |αk|λ−k
1 <

n−1∑
k=K2+1

n

n − k
(1 + ε2)k |αk|λ−k

1

=
n−1∑

k=K2+1

(
1 − k

n − k

)
|αk|

(
1 + ε2

λ1

)k

<

n−1∑
k=K2+1

|αk|
(

1 + ε2
λ1

)k

+
n−1∑

k=K2+1

k |αk|
(

1 + ε2
λ1

)k

1+ε2
λ1

lies within the radius of convergence of both of these series, since α(t) converges

absolutely thus there exists a K3 ≥ K2 such that ∀n > k3 both

n−1∑
k=K3+1

|αk|
(

1 + ε2
λ1

)k

< δ

n−1∑
k=K3+1

k |αk|
(

1 + ε2
λ1

)k

< δ

Thus
n−1∑

k=K3+1

∣∣∣∣∣
( 1/3
n−k

)(
1/3
n

) ∣∣∣∣∣ |αk|λ−k
1 < 2δ
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(5.0.5)For sufficiently large n

αn∣∣∣(1/3
n

)∣∣∣λ−n
1 ≤

∣∣∣∣∣
(

n!
1
3(1

3 − 1) · · · (1
3 − (n − 1))

)∣∣∣∣∣ |αn|λ−n
1

=

∣∣∣∣∣ 1
1
3(1

3 − 1)(1
3 − 2)

∣∣∣∣∣
∣∣∣∣∣ 2

1
3 − 3

∣∣∣∣∣ · · ·
∣∣∣∣∣ n − 2

1
3 − (n − 1)

∣∣∣∣∣ (n − 1)(n) |αn|λ−n
1

<
27
10

(n − 1)(n) |αn|λ−n
1

The series
∑

(n − 1)(n)αntn has radius of convergence greater than 1/λ1, and con-

verges absolutely, so the sequence (n − 1)(n)αntn is cauchy. Thus there exists K5

such that ∀n > K5

αn∣∣∣(1/3
n

)∣∣∣λ−n
1 <

27
10

(n − 1)(n) |αn|λ−n
1 < δ

At this point we fix K in the equation above so that K = max(K1,K2,K3,K4,K5),

and look at the remaining term:

(5.0.3) is less than
K1∑
k=1

(∣∣∣∣∣
( 1/3
n−k

)(
1/3
n

) ∣∣∣∣∣− 1

)
|sk|λ−k

1

Let

ε2 =
δ∑K1

k=1 |αk|λ−k
1

Then by Subclaim 2, since K is fixed, there exists an N > K such that ∀n > N and

0 < j ≤ K

1 <

∣∣∣∣∣
(

1/3
n−j

)(
1/3
n

) ∣∣∣∣∣ < 1 + ε2
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Thus, ∀n > N

K1∑
k=1

(∣∣∣∣∣
( 1/3
n−k

)(
1/3
n

) ∣∣∣∣∣− 1

)
|αk|λ−k

1 <

K1∑
k=1

((1 + ε2) − 1) |αk|λ−k
1 = ε2

K1∑
k=1

|αk|λ−k
1 = δ

Combining the above, for K = max(K1,K2,K3,K4,K5) and n > N

1 +
n−1∑
k=1

∣∣∣∣∣
( 1/3
n−k

)(
1/3
n

) ∣∣∣∣∣αkλ
−k
1 − αn∣∣∣(1/3

n

)∣∣∣λ−n
1 < a(1/λ1)1/3 + 5δ = a(1/λ1)1/3(1 + ε)

So

∣∣∣∣∣∣ rn∣∣∣(1/3
n

)∣∣∣λn
1a(1/λ1)1/3

− 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣

∣∣∣(1/3
n

)∣∣∣λn
1

(
1 +

∑n−1
k=1

∣∣∣∣(1/N
n−k)

(1/N
n )

∣∣∣∣αkλ
−k
1 − αn

˛

˛

˛(1/N
n )

˛

˛

˛

λ−n
1

)
∣∣∣(1/3

n

)∣∣∣λn
1a(1/λ1)1/3

− 1

∣∣∣∣∣∣∣∣∣∣
<

∣∣∣∣∣∣
∣∣∣(1/3

n

)∣∣∣λn
1

(
a(t)1/3(1 + ε)

)∣∣∣(1/3
n

)∣∣∣λn
1a(1/λ1)1/3

− 1

∣∣∣∣∣∣ = ε

Proposition 5.0.8. Let 1 − c(t) = (p(t))2/3. Then there exists an N such that for

k > N , ck ≥ 0.

Proof. By the same method as above, a good approximation for cn is

∣∣∣∣(2/3
n

)∣∣∣∣λn
1 (q(1/λ1))2/3

.

Note that q(1/λ1) must be positive since q(0) = 1 and q(t) has no root between

0 and 1/λ1).

We can now return to our polynomial b(t), constructed such that p(t) − (1 −
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q(t))3 + b(t)(1− q(t)) has coefficient 0 for all terms with degree 3n or less. (n is the

degree of q(t))

From Proposition 5.0.6,

[b(t)]m = bm = 3 [(s(t))((1 − q(t) − s(t))]m

where p(t)1/3 = 1 − r(t) = 1 − q(t) − s(t). We can write

p(t)2/3 = 1 − c(t) = (1 − q(t) − s(t))2

= 1 − 2q(t) − 2s(t) + 2q(t)s(t) + q(t)2 + s(t)2

Thus for n < m ≤ 2n

bm = 3 [(s(t))((1 − q(t) − s(t))]m =
3
2
[cn +

(
q(t)2

)
n
]

and for 2n < m ≤ 3n

bm = 3 [(s(t))((1 − q(t) − s(t))]m =
3
2
[cn −

(
s(t)2

)
n
]

So if n is large enough so that cm ≥ 0 for m ≥ n, we have

bm = 3 [s(t)(1 − q(t) − s(t))]m =
3
2
[cm +

(
q(t)2

)
m

] ≥ 0

So it remains to show that

bm = 3 [s(t)(1 − q(t) − s(t))]m =
3
2
[cm −

(
s(t)2

)
m

] ≥ 0

for 2n < m ≤ 3n.

From Propositions 2 and 3 above we can use the approximations sn ≈
∣∣∣(1/3

n

)∣∣∣λn
1 (q(1/λ1))1/3
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and cn ≈
∣∣∣(2/3

n

)∣∣∣λn
1 (q(1/λ1))2/3.

Note that For 2n < m ≤ 3n

∑
i,m−i>n

∣∣∣∣(1/3
i

)(
1/3

m − i

)∣∣∣∣ ≤ ∑
i,m−i>n

∣∣∣∣( 1/3
n + 1

)(
1/3

m − (n + 1)

)∣∣∣∣
= (m − 2n − 1)

∣∣∣∣( 1/3
n + 1

)(
1/3

m − (n + 1)

)∣∣∣∣
Proposition 5.0.9. For 2n < m ≤ 3n there exists a 1 > d > 0 such that

(m − 2n − 1)
∣∣∣( 1/3

n+1

)( 1/3
m−(n+1)

)∣∣∣∣∣∣(2/3
m

)∣∣∣ ≤ 1 − d

Proof.

Subclaim 3. For a fixed value of n this expression,

(m − 2n − 1)
∣∣∣( 1/3

n+1

)( 1/3
m−(n+1)

)∣∣∣∣∣∣(2/3
m

)∣∣∣
Is strictly increasing in the range 2n < m < 3n

Proof. The denominator of this term,
∣∣∣(2/3

m

)∣∣∣ is strictly decreasing for increasing n.

We can show that the denominator of this term is strictly increasing by looking at

the ratio of 1 term to the next:
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(m − 2n − 1)
∣∣∣( 1/3

n+1

)( 1/3
m−(n+1)

)∣∣∣
(m − 2n)

∣∣∣( 1/3
n+1

)( 1/3
m−n)

)∣∣∣ =
∣∣∣∣ (m − 2n − 1)(m − n)
(m − 2n)(1/3 − (m − n − 1))

∣∣∣∣
=
∣∣∣∣(1 − 1

m − 2n
)(

m − n

4/3 − (m − n)
)
∣∣∣∣

=
1 − 1

m−2n

1 − 4/3
m−n

Then we can compare 1
m−2n to 4/3

m−n , by looking at their ratio:

4/3
m−n

1
m−2n

=
4(m − 2n)
3(m − n)

This term is strictly increasing in the range 2n < m < 3n and is equal to 0 when

m = 2n and 4/6 when m = 3n, thus for 2n < m < 3n we have 1
m−2n > 4/3

m−n and

1 − 1
m−2n < 1 − 4/3

m−n so the ratio
1− 1

m−2n

1− 4/3
m−n

is less than 1, demonstrating that for

2n < m < 3n

(m − 2n − 1)
∣∣∣∣( 1/3

n + 1

)(
1/3

m − (n + 1)

)∣∣∣∣ < (m − 2n)
∣∣∣∣( 1/3

n + 1

)(
1/3

m − n)

)∣∣∣∣

Thus it suffices to consider the largest possible value of m, 3n which gives us

(n − 1)
∣∣∣( 1/3

n+1

)( 1/3
2n−1)

)∣∣∣∣∣∣(2/3
3n

)∣∣∣
Subclaim 4. For all n ≥ 1

(n − 1)
∣∣∣( 1/3

n+1

)( 1/3
2n−1)

)∣∣∣∣∣∣(2/3
3n

)∣∣∣ <
(n)
∣∣∣(1/3

n

)(1/3
2n)

)∣∣∣∣∣∣(2/3
3n

)∣∣∣
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Proof. Again by looking at their ratio, the denominators cancel leaving:

(n − 1)
∣∣∣( 1/3

n+1

)( 1/3
2n−1)

)∣∣∣
(n)
∣∣∣(1/3

n

)(1/3
2n)

)∣∣∣ =
(n − 1)

∣∣∣( 1/3
n+1

)( 1/3
2n−1)

)∣∣∣
(n)
∣∣∣(1/3

n

)(1/3
2n)

)∣∣∣
=

n − 1
n

1/3 − n

n + 1
2n

1/3 − 2n − 1

=
n − 1

n

n(1 − 1
3n)

n + 1
2n

(2n − 1)(1 − 1
3(2n−1))

=
(n − 1)(2n)

(n + 1)(2n − 1)
(1 − 1

3n)
(1 − 1

3(2n−1))

Now we can observe that
1 − 1

3n

1 − 1
3(2n−1)

< 1

(n − 1)(2n)
(n + 1)(2n − 1)

=
2n2 − 2n

2n2 + n − 1
< 1 (n ≥ 1)

and thus their product is less than 1.

Subclaim 5. The terms
(n)
∣∣∣(1/3

n

)(1/3
2n)

)∣∣∣∣∣∣(2/3
3n

)∣∣∣
are strictly decreasing for increasing values of n.

Proof. We use the same trick of comparing the ratio of one term of this series to

the one following it and find:
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(n+1)
˛

˛

˛( 1/3
n+1)(

1/3
2n−1))

˛

˛

˛

˛

˛

˛(2/3
3n )

˛

˛

˛

(n)
˛

˛

˛(1/3
n )( 1/3

2n−1))
˛

˛

˛

˛

˛

˛(2/3
3n )

˛

˛

˛

=
n + 1

n

1/3 − n

n + 1
((1/3) − 2n)(1/3 − (2n + 1))

(2n + 1)(2n + 2)
×

(3n + 1)(3n + 2)(3n + 3)
((2/3) − 3n)((2/3) − (3n + 1))((2/3) − (3n + 2))

=
(1 − 1

3n) 2n
2n+2((1 − 1

6n)(1 − 1
6n+3)

3n
3n+3(1 − 2

9n)(1 − 2
9n+3)(1 − 2

9n+6)

We now define

f(x) =
(1 − 1

3x)((1 − 1
6x)(1 − 1

6x+3)

(1 − 2
9x)(1 − 2

9x+3)(1 − 2
9x+6)

=
3(3x − 1)(6x − 1(3x + 1)(3x + 1)(3 + 2)

x(2x + 1)(9x − 1)(9x − 2)(9x + 4)

We can find the derivitive of this function:

f ′(x) =
d

dx

(
3(3x − 1)(6x − 1(3x + 1)(3x + 1)(3 + 2)

x(2x + 1)(9x − 1)(9x − 2)(9x + 4)

)
=

6(104976x7 + 130491x6 + 49167x5 − 1485x4 − 4239x3 − 258x2 + 140x + 8)
x2(1458x4 + 1215x3 + 135x2 − 70x − 8)2

The numerator of this function factors as 6(3x + 1)(8 + 116x − 606x2 − 2421x3 +

5778x4 + 31833x5 + 34992x6) Thus the only roots of f ′(x) can be x = −1
3 or where

(8 + 116x − 606x2 − 2421x3 + 5778x4 + 31833x5 + 34992x6) = 0

This has no solutions in [1,∞) since

(8 + 116x − 606x2 − 2421x3 + 5778x4 + 31833x5 + 34992x6)

= (34992x6 − 2421x3) + (31833x5 − 606x2) + +5778x4 + 116x + 8
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and each term above is strictly positive for n ≥ 1. By a similar argument, the

denominator of f ′(x) has no roots in [1,∞). We can calculate f ′(1) = 1672800
7452900 ≈

0.2244 > 0 thus f ′(x) > 0 for all x ∈ [1,∞). Thus f(x) is strictly increasing on

[1,∞) and

lim
x→∞

f(x) = lim
x→∞

(1 − 1
3x)((1 − 1

6x)(1 − 1
6x+3)

(1 − 2
9x)(1 − 2

9x+3)(1 − 2
9x+6)

= 1

so f(x) < 1 for all x ∈ [1,∞). The terms

(n)
∣∣∣(1/3

n

)(1/3
2n)

)∣∣∣∣∣∣(2/3
3n

)∣∣∣
are strictly decreasing for increasing values of n.

We can then evaluate this expression for n = 1 and find

∣∣∣(1/3
1

)(1/3
2)

)∣∣∣∣∣∣(2/3
3

)∣∣∣ =
3
4

Thus for all n and 2n < m ≤ 3n

(m − 2n − 1)
∣∣∣( 1/3

n+1

)( 1/3
m−(n+1)

)∣∣∣∣∣∣(2/3
m

)∣∣∣ ≤ 3
4

= 1 − 1
4

so we can choose d = 1
4 and the proposition is valid.

Then write

cm −
(
s(t)2

)
m

= cm −
∑

i,m−i>n

sism−i

For convenience we define A =
∣∣∣(2/3

n

)∣∣∣ and B = (m − 2n − 1)
∣∣∣( 1/3

n+1

)( 1/3
m−(n+1)

)∣∣∣.
Choose δ > 0 such that Ad > δ(A − 2B − δB)

By the propositions above, we can choose n such that ∀m > n, cm > (1 −
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δ)
∣∣∣(2/3

m

)∣∣∣λm
1 (q(1/λ1))2/3 and sm < (1 + δ)

∣∣∣(1/3
m

)∣∣∣λm
1 (q(1/λ1))1/3. So

cm−
(
s(t)2

)
m

> (1 − δ)
∣∣∣∣(2/3

n

)∣∣∣∣λn
1 (q(1/λ1))2/3

−
∑

i,m−i>n

(
(1 + δ)

∣∣∣∣(1/3
i

)∣∣∣∣λi
1(q(1/λ1))1/3

)(
(1 + δ)

∣∣∣∣( 1/3
m − i

)∣∣∣∣λm−i
1 (q(1/λ1))1/3

)

=(1 − δ)
∣∣∣∣(2/3

n

)∣∣∣∣λn
1 (q(1/λ1))2/3 −

∑
i,m−i>n

(1 + δ)2
∣∣∣∣(1/3

i

)∣∣∣∣ ∣∣∣∣( 1/3
m − i

)∣∣∣∣λm
1 (q(1/λ1))2/3

=
(
λn

1 (q(1/λ1))2/3
)(1 − δ)

∣∣∣∣(2/3
n

)∣∣∣∣− (1 + δ)2
∑

i,m−i>n

∣∣∣∣(1/3
i

)∣∣∣∣ ∣∣∣∣( 1/3
m − i

)∣∣∣∣


≥
(
λn

1 (q(1/λ1))2/3
)(

(1 − δ)
∣∣∣∣(2/3

n

)∣∣∣∣− (1 + δ)2(m − 2n − 1)
∣∣∣∣( 1/3

n + 1

)(
1/3

m − (n + 1)

)∣∣∣∣)

In terms of A and B defined above, the term in parentheses can be expanded to:

A − δA − B − 2δB − δ2B

Then since B
A ≤ 1 − d, A − B ≥ Ad and the expression above is greater than or

equal to

Ad − δA − 2δB − δ2B = Bd − δ(A − 2B − δB)

By our choice of δ above this is strictly greater than or equal to 0, so we are done.

Namely, this demonstrates that we can construct a polynomial b(t) of degree at

most 3n with positive coefficients such that p(t) − (1 − q(t))3 + b(t)(1 − q(t)) has

coefficient 0 for all terms with degree 3n or less.

Let d(t) = (1−q(t))3−b(t)(1−q(t))−p(t) Since n is the degree of q(t), q(t)3 will

have degree 3n as well, so any remaining terms in d(t) will be the result of trailing

terms in the product of b(t) and q(t). Since both of these polynomials contain only

positive coefficients, d(t) will as well. As a result, p(t) = (1−q(t))3−b(t)(1−q(t))−
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d(t) and we can construct the matrix

A(t) =


q(t) d(t)

t2
b(t)
t

0 q(t) t

t 0 q(t)


such that I − A(t) has determinant p(t).

32



Chapter 6

Further Work

The obvious next step in this research would be to continue to study this problem

for larger values of N , and to develop constructions for correspondingly larger poly-

nomial matrices. Already for the case N = 4 at least a slightly new method will be

required. The logical progression to a 4 × 4 matrix would be to construct

A(t) =



q(t) α(t) β(t) γ(t)

0 q(t) t 0

0 0 q(t) t

t 0 0 q(t)


In this case I − A(t) has determinant

(1 − q(t))4 − α(t)t3 − β(t)(1 − q(t))t2 − γ(t)(1 − q(t))2t

Ignoring the γ(t) term, (ie letting γ(t) = 0) results in a problem identical to the N=3

case, however it does not appear that this method will suffice for all polynomials

which satisfy the condition that p(t)1/4 has all negative coefficients. Thus it is likely

that a solution will require use of the γ(t) polynomial, however the same ”greedy”
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algorithm cannot be used. Whereas (1 − q(t)) had all negative coefficients, except

for the leading 1, meaning that each coefficient of β(t) ”helped” all of the coefficients

of higher order by making them more positive, (1 − q(t))2 will not in general have

that property, so coefficients of λ(t) would correct some terms while ”hindering”

others by making them more negative. It is also possible that a different matrix

configuration, utilizing more of the positions occupied by ts and 0s is required.

Clearly, the ideal result would be a general proof that demonstrated this result

for all N.

Another interesting possibility for research would be to look at the degrees of

polynomials required in this construction and to attempt to constrain them. As

mentioned before, if a given construction could control the size of both the polyno-

mial matrix and the degrees of the polynomials used in the matrix, then it would

put a constraint on the required size of the ”normal” matrix over R+ described in

the original problem.

Interestingly, the results given here for N = 1 and 2 already constrain the degree

of the polynomials used. (For a polynomial of degree d, the N = 1 requires only

a polynomial of degree d and the N = 2 case requires a polynomial of degree at

most 2d) However, the polynomials required in the N = 3 case may currently have

arbitrarily high degree.
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