WHEN SETS CAN AND CANNOT HAVE MSTD SUBSETS
NATHAN MCNEW, STEVEN J. MILLER, VICTOR XU, AND SEAN ZHANG

ABSTRACT. A finite set of integers! is a More Sums Than Differences (MSTD) set if
|[A+A| > |A— Al. While almost all subsets gD, ..., n} are not MSTD, interestingly
a small positive percentage are. We explore sufficient ¢immdi on infinite sets of
positive integers such that there are either no MSTD supagtsiost finitely many
MSTD subsets, or infinitely many MSTD subsets. In particuée prove no subset
of the Fibonacci numbers is an MSTD set, establish conditgurch that solutions
to a recurrence relation have only finitely many MSTD suhsetsl show there are
infinitely many MSTD subsets of the primes.
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1. INTRODUCTION
For any finite set of natural numbe#AsC N, we define the sumset
A+A = {a+d:a,d € A} (1.1)
and the difference set
A—A = {a—d :a,d € A}; (1.2)

A'is called an More Sums Than Differences (MSTD) sétlif- A| > | A— A| (if the two
cardinalities are equal it is called balanced, and othendifference dominated). As
addition is commutative and subtraction is not, it was raltta conjecture that MSTD
sets are rare. Conway gave the first example of such &®et,3,4,7,11,12, 14}, and
this is the smallest such set. Later authors constructedtemfamilies, culminating in
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the work of Martin and O’Bryant, which proved a small postpercentage of subsets
of {0,...,n} are MSTD as — oo, and Zhao, who estimated this percentage at around
4.5 -107%. See[[FP[_He, HM, M&, MO, Nal, Na2, Na3, Rul, RuZ,|zh3] for gehe
overviews, examples, constructions, bounds on percentag® some generalizations,
[MOS, IMPR,[MS,Zh1] for some explicit constructions of infmifamilies of MSTD
sets, and [DKMMW| DKMMWW/MV,[Zh2] for some extensions to ethsettings.

Much of the above work looks at finite subsets of the naturallmers, or equivalently
subsets of 0, 1,...,n} asn — oo. We investigate the effect of restricting the initial
set on the existence of MSTD subsets. In particular, giveimfamte setA = {a;},
when doesA have no MSTD subsets, only finitely many MSTD subsets, or itefin
many MSTD subsets?

Our first result shows that if the sequence grows sufficiaagbydly and there are no
‘small’ subsets which are MSTD, then there are no MSTD sughset

Theorem 1.1.Let A := {ax}3>, be a sequence of natural numbers. If there exists a
positive integer such that

(1) ap > ap_1 +ay_,.forall k > r+1,and
(2) A does not contain any MSTD s€&twith |.S| < 2r + 1,

then A contains no MSTD set.

We prove this in&R2. As the smallest MSTD set has 8 elemengg &), the second
condition is trivially true ifr < 3. In particular, we immediately obtain the following
interesting result.

Corollary 1.2. No subset of the Fibonacci numbd§, 1,2,3,5,8,...} is an MSTD
set.

The proof is trivial, and follows by taking = 3 and noting
Frp = Fr1+Fpo > Fp 1+ Fr3 (1.3)

for k > 4.

We now present a partial result on when there are at mostlfimtany MSTD sub-
sets. For an MSTD sef, we call S a special MSTD set ifS + S| — |S — S| > |9].
Note if S is a special MSTD set then § = S U {z} for any sufficiently larger then
S’ is also an MSTD set. We have the following result about a secpibaving at most
finitely many MSTD sets (seé 8A for the proof).

Theorem 1.3.Let A := {a;};2, be a sequence of natural numbers. If there exists an
integers such that the sequende, } satisfies

Q) ap > ap_1 + ap_3 forall £ > s, and
(2) {ay,...,a4s16} has no special MSTD subsets,

then A contains at most finitely many MSTD sets.

The above results concern situations where there are not M&1D sets; we end
with an example of the opposite behavior.

Theorem 1.4. There are infinitely many MSTD subsets of the primes.
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We will see later that this result follows immediately frohetGreen-Tao Theorem
[GT], which asserts that the primes contain arbitrarilygpanfortunately, such an ar-
gument is wasteful as we almost surely have to look at a losgguence of the primes
to find an MSTD set than is needed. We show[ih §3 that assumértgahdy-Littlewood
conjecture (see ConjectureB.1) holds, we are able to fink suizsets far earlier.

2. SUBSETS WITH NOMSTD SETS

We prove Theorem 1.1, establishing a sufficient conditiemisure the non-existence
of MSTD subsets.

Proof of Theorerh Il1let S = {s1,59,..., 55} = {agq). ag(2),-- -, a9} be a finite
subset of4, whereg : Z* — Z* is an increasing function. We show th&tis not an
MSTD set by strong induction of(k).

We know from [Hé] that all MSTD sets have at least 8 elemeints,is notan MSTD
setifk < 7;in particular,S is not an MSTD set ifj(k) < 7.

We proceed by induction. Assume fgfk) > 8 that allS’ of the form{sy, ..., sx_1}
with s, < ay() are not MSTD sets. The proof is completed by showing

S = S/U{ag(k)} = {51, .., Sk—1,Qgk) } (2.2)

is not MSTD sets for any,).

We know thatS’ is not an MSTD set. Also, ik < 2r + 1then|S| < 2r 4+ 1 andS is
not an MSTD set by the second assumption of the theorein>I2r + 2, consider the
number of new sums and differences obtained by addjng As we have at most+1
new sums, the proof is completed by showing there are atAeast new differences.

Sincek > 2r + 2, we havek — [5£2] > r. Lett = 553 ]|. Thent < k — r, which
impliess; < s,_,. The largest difference in absolute value between elemerfisis
sk_1 — $1; we now show that we have added at |efast 1 distinct differences greater
thansk — 1 — s; in absolute value, completing the proof.

Ag(k) — St = Gg(k) = Sk—r = Qg(k) — Og(k—r)
2 Ag(k) = Qglk)—r
> Agk)—1 = Ag(k)—1 — Q1 (by the first assumption ofu,, })
> Sg—1— Q1 = Sk—1 — S1. (2.2)

Sinceay(r) — s¢ > sp—1 — s1, we know that

Qg(k) = Sty -+, g(k) = 52, Gg(k) = 51

aret differences greater than the greatest differenc& irAs we could subtract in the
opposite orders contains at least

2t:2{¥J >2-$=k+1 2.3)

new differences. ThuS + S has at mosk + 1 more sums thas’ + S’ but S — S has
at leastt + 1 more differences compared & — S’. SinceS’ is not an MSTD set, we
see thatS is not an MSTD set. O

We end with an immediate corollary.
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Corollary 2.1. Let A := {a; }?2, be a sequence of natural numbersulf> a;_1+ax_3
for all kK > 4, thenA contains no MSTD subsets.

Proof. From [He] we know that all MSTD sets have at least 8 elementseWy¥ = 3
the second condition of Theorédm1L.1 holds, completing tbefpr O

For another example, we consider shifted geometric pregres.

Corollary 2.2. Let A = {a;}32, with a, = cr* + d for all k > 1, where0 # ¢ € N,
d € N, andl < r € N. ThenA contains no MSTD subsets.

Proof. Without loss of generality we may shift and assuine 0 andc = 1; the result
now follows immediately from simple algebra. O

3. MSTD SUBSETS OF THE PRIME NUMBERS

We now investigate MSTD subsets of the primes. While Thedtedfollows im-
mediately from the Green-Tao theorem, we first conditignaibve there are infinitely
many MSTD subsets of the primes as this argument gives ar lsettse of what the
‘truth’ should be (i.e., how far we must go before we find MSTibsets).

3.1. Admissible Prime Tuples and Prime Constellations.We first consider the idea
of primem-tuples. A primem-tuple (by, bo, . . ., b,,) represents a pattern of differences
between prime numbers. An integematches this pattern b, +n, by +n, ..., b, +n)
are all primes.

A prime m-tuple (b1, bs, ..., b,,) is called admissible if for all integers > 2,
{b1,bs,...,b,} does not cover all values moduto If a primem-tuple is not admissi-
ble, it's easy to see that it can be matched by at most finitelgynprimes: whenever
n > k, one of(by + n,by +n,..., b, + n) is divisible byk and greater thah, so it's
not a prime.

It is conjectured in[[HL] that all admissible-tuples are matched by infinitely many
integers.

Conjecture 3.1(Hardy-Littlewood) Letb,, bs, . .., b,, bem distinctintegers, and(z;
b1, by, ..., by,) the number of integers < n < x such that{n + by, n+bs,...,n+b,}
consists wholly of primes. Then

P(z) ~ 6<bl,b2,...,bm>/ du
2

(logu)™

whenz — oo, where

m—1
p p—v
&by, ba, .- bm) = [] <<—) )
s p—1 p—1

is a product over all primes, and = v(p; by, b, ..., b,) is the number of distinct
residues oby, by, . .. b, to modulusp.

We note that wherb,, by, - - - , b,,) is an admissiblen-tuple, v(p; by, bs, ..., b,,) IS
never equal tg, S0OS(by, by, . . ., by,) is positive. Therefore this conjecture implies that
every admissiblen-tuple is matched by infinitely many integers.
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3.2. Infinitude of MSTD subsets of the primes. We now show the Hardy-Littlewood
conjecture implies there are infinitely many subsets of tirags which are MSTD sets.

Theorem 3.2. If the Hardy-Littlewood conjecture holds for all admissbh-tuples
then the primes have infinitely many MSTD subsets.

Proof. Consider the smallest MSTD s8t= {0,2,3,4,7,11,12,14}. We know that
{p,p+2s,p+3s,p+4s,p+ Ts,p+ 11s,p + 12s,p + 14s} is an MSTD set for all
positive integer®, s. Sets = 30, we deduce that if infinitely many primes match the
8-tupleT" = (0, 60,90, 120, 210, 330, 360, 420), then there are infinitely many primes
on MSTD sets.

We check thaf” is an admissible prime 8-tuple. When > 8, the eight numbers in
T clearly don’t cover all values modute. Whenm < 8, we show by computation that
T does not cover all values modute.

By Conjecturé 31, there are infinitely many integessich that{ p, p+60, p+90, p+
120, p + 210, p + 330, p + 360, p + 420} contains all primes. These are all MSTD sets,
so there are infinitely many MSTD sets on primes. U

Of course, all we need is that the Hardy-Littlewood conjeztwolds for one admis-
siblem-tuple which has an MSTD subset. We may take 19, which gives an explicit
MSTD subset of the primes19, 79, 109, 139, 229, 349, 379,439} (a natural question
is what is the smallest MSTD subset of the primes). If one esgstone can use the
conjecture to get some lower bounds on the number of MSTDessilo$ the primes at
mostz. The proof of Theoreri 11.3 follows similarly.

Proof of Theorerh 113By the Green-Tao theorem, the primes contain arbitrarihglo
arithmetic progressions. Thus for eadh> 14 there are infinitely many pair®, d)
such that

{pp+d,p+2d,....p+ Nd} (3.1)

are all prime. We can then take subsets as in the proof of En&a8r2. O

APPENDIXA. SUBSETS WITHFINITELY MANY MSTD SeTS

We start with some properties of special MSTD sets, and thewepTheorend 113.
The arguments are similar to those used in proving Thebrdm 1.

A.1. Special MSTD Sets.Recall an MSTD se$ is special if[S + S| — |5 — S| > |9].
Foranyr > 23 _.|s|, addingz createq.S| + 1 new sums and|S| new differences.
Let S* =S U{z}. Then

15"+ 5% =157 =57 = S+ (IS[+1) =2[5] = 1, (A1)

andS* is also an MSTD set. Hence, from one special MSTDSet {a,},°, =: A,
we can generate infinitely many MSTD sets by adding any larggger inA.

Conversely, if a set is not a special MSTD set, thént+ S| — |S — S| < |S|, and
by adding any large > 2% __.|s|, S U {z} has at least as many differences as sums.
Thus only finitely many MSTD sets can be generated by appgratie integer from!
toS.

Note that special MSTD sets exist. Consider the smallestMS§ats = {0, 2, 3, 4,
7,11, 12, 14}. Using the method of base expansion, described’in [He], eable to
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obtainS; containing|S3| = 8% = 512 elements, such thaf; + 53| = [S+S5|? = 263 =
17576, and|53 — Sg| = |S — S|3 = 253 = 15625. Then|53 + Sg| — |53 — Sg| > |Sg|

A.2. Finitely Many MSTD Sets on a Sequencelf a sequencel = {a, }2°, contains
a special MSTD se$, then we can get infinitely many MSTD subsets on the sequence
just by adding sufficiently large elements4to S. Therefore for a sequenceto have
at most finitely many MSTD subsets, it is necessary that itfeaspecial MSTD sets.
Using the result from the previous subsection, we can prdwvemiiem 1.3.

We establish some notation before turning to the proof. Wewndéte A as the union
of Ay ={ai,...,as_1} and Ay = {a, asy1, ... }. By Corollary[2.1, we know thati,
contains no MSTD sets. So any MSTD set must contain some atsrfrem A, .

We first prove a lemma abou;.

Lemma A.1. LetS’ = {sy,...,s,_1} be a subset ofi containing at least 3 elements
Ay, Gy, Gy 1N Ao, With g > 79 > 71, Letp(k) > 73, and letS = 5" U {a,u }. Then
either S is not an MSTD set, of satisfiedS — S| — |S + S| > |S' = 5| — |S"+ 5.

Proof. We follow a similar argument as in Theorém]|1.1.
If £ <7, thensS is notan MSTD set.
If k> 8, thenk — [E£2] > 3. Lett = |£22]. Thent < k — 3, ands, < s;_3, and

Ap(k) = St 2 Qp(k) = Sk—3 = Gp(k) — Qip(k—3)
2 Qp(k) — Qp(k)-3
> Qp(k)—1 = Qyp(k)—1 — 01 (by assumption on)
> Sg-1— Q1 = Skp—1 — S1. (A.2)

Inthe setS’, the greatest difference ig_; — s,. Sincea, ) —s; > sp—1 — 51, we know
thata,y — s¢, ..., apmw) — s2, a0 — 51 are all differences greater than the greatest
difference inS’.

By a similar arguments; — a, ), - - - , S2 — u), S1— Gy (x) are all differences smaller
than the smallest difference H.

So S contains at leastt = 2|23 | > 2. B = k 4+ 1 new differences compared to
S’, andS satisfies

IS =S| —|S+ 8| > |§=95—|5+ 95, (A.3)
completing the proof. O
Proof of Theorerh 113Let K, be an MSTD subset of;. Let K,, be an MSTD subset
of A with n elements ind,, in the formS U {a,,,...,a,, }, whereS is a subset of{,

ands <r; <ry <---<r,. LetS, be any (not necessarily MSTD) subset4fn the
same form.

The lemma tells us that for anfy,, with » > 3, when we add any new element,
to getS, 1, eitherS,, ., is not an MSTD set, ofS,, .1 — Spi1| — [Sns1 + Snaa| >
|K, — K,| — | K, + K,|+ 1.

Let

d = I%%X(|K3+K3| — |K3 — K3, 1). (A.4)

Then for alln > d + 3, consider anys,,. For3 < k < n, defineS) as the set obtained
by deleting then — k) largest elements frorf,,.
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If S; is notan MSTD set for any > 3, by LemmdA.l eitheb; . is not an MSTD
set, 0r|Sk+1 — Sk+1| — |Sk+1 -+ Sk+1| > |Sk — Sk| — |Sk -+ Sk| > 0, in which CaS$k+1

is also not an MSTD set. Assume thgt is an MSTD set, and the previous argument

shows thatS,,_; to S; must all be MSTD sets, and we have
|Sn — Sp| = [Sn + Su| > |93 — S5 — |95 4+ S3| +d > 0, (A.5)

sincesSs is one of theKs's. Thens,, is not an MSTD set, a contradiction.

Therefore the previous assumption is false, &pds not an MSTD set for alh >
d + 3. This means that every MSTD set dnis one of K, K1, Ks, ..., K4y3.

Forn > 0, let k,, be the number of all possiblg,,. We can show by induction that

e k, isfinite for alln > 0, and
e everyK,, is not a special MSTD set.

We have 4 base cases.

We know thatA; is finite, sok,, which is the number of MSTD subsets df, is
finite.

Any K is asubset ofay,...,as 1}, which is a subset o’ = {ay, ..., a4s16}. SO
suchKj is not a special MSTD set.

Consider the indexs. We claim that

ays > Z a. (A.6)

a€Ay

This is because

Y a < sea

a€Ay
S S
< —(as+ asia) < = - Gsi3
2 2
S S
< Z (as+3 + a5+5) < Z . a,s+6 e

< Qgy3 log,(s)

< Q435 = Q4s
Therefore for all; > 4s,
ar, > Qg > Z a. (A.7)
acAy
Consider anys; with r; > 4s. It contains a set of elements= {sy,...,s,,}in 44

anda,, in A;. We know that) ©__. s < a,,, and we also know thaf is not a special
MSTD set. So5; = S U {a,,} isnotan MSTD set.

Therefore forS; to be an MSTD set;; must be smaller thaths. We conclude that
k; is finite.

Then anyK is a subset of a4, . .., a4}, Which is a subset oft’. Hence, suchi’; is
not a special MSTD set.

Consider the indexs + 3. For allry > 4s + 3,

py — Qpyl > Qpyg > Qgg > Z a. (A.8)

acA,
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Consider anys, with , > 4s+ 3. It contains some elements= {si,...,s,,}in A;
andry, 7 in A;. We haves,, — a,, > a,, — a,,—,. We also have,, —a,,_1 > ) __¢s.

Thereforea,, > (3.4 s) + ar, andS U {a,, } is not a special MSTD set. Hence,
Sy = SU{ry,r} isnotan MSTD set.

Then forS; to be an MSTD set;, must be smaller thasis + 3. We conclude that,
is finite.

We also know that any, is a subset ofay, ..., ass41}, Which is a subset of!’.
Therefore suclk, is not a special MSTD set.

Consider the indexs + 6. For allrs > 4s + 6,

Apg—3 — Apg—4 > QAry—6 Z Ags > Z a. (Ag)
ac€Ay

Consider anys; with r3 > 4s + 6. We write Ss asS U {a,,, a,,, a., }. If |S| < 5, we
know that|Ss| < 8, andSs is not an MSTD set. We can then assume that> 5. We
have 2 cases.

Inthe first caser;, < 13—3, S0, — Ay — Ay = Qpy—Qpy—3—Qpy—g > Qpg—1—Cpg—g >
Ury—2 > Qpy—g > D g S

We know thatS U {a,,, a,,} is not a special MSTD set. So adding, with a,, >
(Yyes8) + ar, + a,, creates anon-MSTD set.

In the second case; > 13 — 3, S0, — Gy, > Apy — Gry—1 > D 5. Similarly,
Ay — Qpy > Qpy_g — Gpy_3 > Y o 5.

Therefore the differences between, a,,, a,, are large relative to the elementsin
andS; + S5 consists of 4 copiesd + S (S+ 5, a,, + S+ S5, ar, + S+ S, a,, +5+.5)
plus 5 or 6 more elements, asg — S3 consists of 7 copies &f — S plus 4 or 6 more
elements.

We haveS; + S3| = 4|5 + S|+ ¢; and|S3 — S5| = 7|S — S|+ ¢». |S — S| is at least
2|S| — 1. SinceS is not a special MSTD set, we know th&t+ S| < |S — S|+ |S|.

Then
|S + S| 1S 1S 5 14 7
< < — = — —. )
\S—S|<1+|S—S\—1+2\S\—1—1+9 5 <4 (A.10)

This tells us that|S + S| < 7|.S — S|. To determine:, c,, we consider 2 cases.

® a,,—a,, = a.,—a,,. Inthis case there are 5 more sums and 4 more differences.
Since4|S + S|+ 5 < 7|S — S| + 4, we have S; + S3| < |S5 — S3|. ThenSs is
not an MSTD set.

e a,, —a, # a,, — a,,, and we have 6 more sums and 6 more differences. Since
41S 4+ S| +6 < 7|S — S| + 6, we know that.S3 + S3| < |S3 — S3|, andSs is
not an MSTD set.

Hence, forSs; to be an MSTD set;; must be smaller tha#is + 6. We conclude that
ks is finite.

In addition, anyK; is a subset oA’ = {a4, ..., a4s16}, SO SUChK3 is not a special
MSTD set.

Assume that;, is finite for somen > 3. Equivalently, assume that there exisis
such that ifr,, > t,,, then any set containing., is not an MSTD set. We can show that
kn.1 is finite.
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Lett,., be the index such that for al}, ., > t,,.1,

U,y > Y g (A.11)

x<rn

Consider anyS C Ay, and letS, = S U {a, - ,a,,} forany{a,, -, a. }.
Consider adding any,., , with ,,,; > ¢, to S,,. We have two cases.

o If r, < t,, thenS, is, by inductive hypothesis, not a special MSTD set. So
addinga,,,, > > .4 @ Creates a non-MSTD set.
e If r, > t,, thens,, is, by inductive hypothesis, notan MSTD set. |Sp—S,,| —
|S,, + S| > 0. Sincen > 3, we can apply Lemmia’Al1, and eith&f; is not
an MSTD set, 0fS,+1 — Sps1| — [Snt1 + Sns1| > |Sn — Su| = [Sn + Sn| >0,
in which caseS,, ,; is still not an MSTD set.

We conclude that for all MSTD setS, ,;, we must have,,; < t,.1. SOk, 1 IS
finite.

Consider any MSTD sek’,, ., = S, U{a,, ., }. Applying lemmdA.1 again, we have
| K1 — Knv1| — | Kns1 + Koga| > |Sn — Sal — |Sn + Sa|. We know, from inductive
hypothesis, thab,, is not a special MSTD set. Therefore all possibblg,; are not
special MSTD sets.

By induction,k,, is finite for alln > 0, and all K,, are not special MSTD sets.

We have previously shown that every MSTD setdis one of K, K1, Ks, ..., Kgy3.
We now know that there are finitely many sets for each groughese are finitely many
MSTD sets onA. 0
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