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ABSTRACT. A finite set of integersA is a More Sums Than Differences (MSTD) set if
|A+A| > |A−A|. While almost all subsets of{0, . . . , n} are not MSTD, interestingly
a small positive percentage are. We explore sufficient conditions on infinite sets of
positive integers such that there are either no MSTD subsets, at most finitely many
MSTD subsets, or infinitely many MSTD subsets. In particular, we prove no subset
of the Fibonacci numbers is an MSTD set, establish conditions such that solutions
to a recurrence relation have only finitely many MSTD subsets, and show there are
infinitely many MSTD subsets of the primes.
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1. INTRODUCTION

For any finite set of natural numbersA ⊂ N, we define the sumset

A+ A := {a+ a′ : a, a′ ∈ A} (1.1)

and the difference set
A−A := {a− a′ : a, a′ ∈ A}; (1.2)

A is called an More Sums Than Differences (MSTD) set if|A+A| > |A−A| (if the two
cardinalities are equal it is called balanced, and otherwise difference dominated). As
addition is commutative and subtraction is not, it was natural to conjecture that MSTD
sets are rare. Conway gave the first example of such a set,{0, 2, 3, 4, 7, 11, 12, 14}, and
this is the smallest such set. Later authors constructed infinite families, culminating in
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the work of Martin and O’Bryant, which proved a small positive percentage of subsets
of {0, . . . , n} are MSTD asn → ∞, and Zhao, who estimated this percentage at around
4.5 · 10−4. See [FP, He, HM, Ma, MO, Na1, Na2, Na3, Ru1, Ru2, Zh3] for general
overviews, examples, constructions, bounds on percentages and some generalizations,
[MOS, MPR, MS, Zh1] for some explicit constructions of infinite families of MSTD
sets, and [DKMMW, DKMMWW, MV, Zh2] for some extensions to other settings.

Much of the above work looks at finite subsets of the natural numbers, or equivalently
subsets of{0, 1, . . . , n} asn → ∞. We investigate the effect of restricting the initial
set on the existence of MSTD subsets. In particular, given aninfinite setA = {ak}

∞
=1,

when doesA have no MSTD subsets, only finitely many MSTD subsets, or infinitely
many MSTD subsets?

Our first result shows that if the sequence grows sufficientlyrapidly and there are no
‘small’ subsets which are MSTD, then there are no MSTD subsets.

Theorem 1.1. Let A := {ak}
∞
k=1 be a sequence of natural numbers. If there exists a

positive integerr such that

(1) ak > ak−1 + ak−r for all k ≥ r + 1, and
(2) A does not contain any MSTD setS with |S| ≤ 2r + 1,

thenA contains no MSTD set.

We prove this in §2. As the smallest MSTD set has 8 elements (see [He]), the second
condition is trivially true ifr ≤ 3. In particular, we immediately obtain the following
interesting result.

Corollary 1.2. No subset of the Fibonacci numbers{0, 1, 2, 3, 5, 8, . . .} is an MSTD
set.

The proof is trivial, and follows by takingr = 3 and noting

Fk = Fk−1 + Fk−2 > Fk−1 + Fk−3 (1.3)

for k ≥ 4.
We now present a partial result on when there are at most finitely many MSTD sub-

sets. For an MSTD setS, we callS a special MSTD set if|S + S| − |S − S| ≥ |S|.
Note if S is a special MSTD set then ifS ′ = S ∪ {x} for any sufficiently largex then
S ′ is also an MSTD set. We have the following result about a sequence having at most
finitely many MSTD sets (see §A for the proof).

Theorem 1.3. LetA := {ak}
∞
k=1 be a sequence of natural numbers. If there exists an

integers such that the sequence{ak} satisfies

(1) ak > ak−1 + ak−3 for all k ≥ s, and
(2) {a1, . . . , a4s+6} has no special MSTD subsets,

thenA contains at most finitely many MSTD sets.

The above results concern situations where there are not many MSTD sets; we end
with an example of the opposite behavior.

Theorem 1.4.There are infinitely many MSTD subsets of the primes.
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We will see later that this result follows immediately from the Green-Tao Theorem
[GT], which asserts that the primes contain arbitrarily long; unfortunately, such an ar-
gument is wasteful as we almost surely have to look at a longersequence of the primes
to find an MSTD set than is needed. We show in §3 that assuming the Hardy-Littlewood
conjecture (see Conjecture 3.1) holds, we are able to find such subsets far earlier.

2. SUBSETS WITH NOMSTD SETS

We prove Theorem 1.1, establishing a sufficient condition toensure the non-existence
of MSTD subsets.

Proof of Theorem 1.1.Let S = {s1, s2, . . . , sk} = {ag(1), ag(2), . . . , ag(k)} be a finite
subset ofA, whereg : Z+ → Z

+ is an increasing function. We show thatS is not an
MSTD set by strong induction ong(k).

We know from [He] that all MSTD sets have at least 8 elements, soS is not an MSTD
set ifk ≤ 7; in particular,S is not an MSTD set ifg(k) ≤ 7.

We proceed by induction. Assume forg(k) ≥ 8 that allS ′ of the form{s1, . . . , sk−1}
with sk−1 < ag(k) are not MSTD sets. The proof is completed by showing

S := S ′ ∪ {ag(k)} = {s1, . . . , sk−1, ag(k)} (2.1)

is not MSTD sets for anyag(k).
We know thatS ′ is not an MSTD set. Also, ifk ≤ 2r+ 1 then|S| ≤ 2r+ 1 andS is

not an MSTD set by the second assumption of the theorem. Ifk ≥ 2r+ 2, consider the
number of new sums and differences obtained by addingag(k). As we have at mostk+1
new sums, the proof is completed by showing there are at leastk + 1 new differences.

Sincek ≥ 2r + 2, we havek − ⌊k+3
2
⌋ ≥ r. Let t = ⌊k+3

2
⌋. Thent ≤ k − r, which

impliesst ≤ sk−r. The largest difference in absolute value between elementsin S is
sk−1 − s1; we now show that we have added at leastk + 1 distinct differences greater
thansk − 1− s1 in absolute value, completing the proof.

ag(k) − st ≥ ag(k) − sk−r = ag(k) − ag(k−r)

≥ ag(k) − ag(k)−r

> ag(k)−1 ≥ ag(k)−1 − a1 (by the first assumption on{an})

≥ sk−1 − a1 ≥ sk−1 − s1. (2.2)

Sinceag(k) − st ≥ sk−1 − s1, we know that

ag(k) − st, . . . , ag(k) − s2, ag(k) − s1

aret differences greater than the greatest difference inS ′. As we could subtract in the
opposite order,S contains at least

2t = 2

⌊

k + 3

2

⌋

> 2 ·
k + 1

2
= k + 1 (2.3)

new differences. ThusS + S has at mostk + 1 more sums thanS ′ + S ′ butS − S has
at leastk + 1 more differences compared toS ′ − S ′. SinceS ′ is not an MSTD set, we
see thatS is not an MSTD set. �

We end with an immediate corollary.
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Corollary 2.1. LetA := {ak}
∞
k=1 be a sequence of natural numbers. Ifak > ak−1+ak−3

for all k ≥ 4, thenA contains no MSTD subsets.

Proof. From [He] we know that all MSTD sets have at least 8 elements. Whenr = 3
the second condition of Theorem 1.1 holds, completing the proof. �

For another example, we consider shifted geometric progressions.

Corollary 2.2. LetA = {ak}
∞
k=1 with ak = crk + d for all k ≥ 1, where0 6= c ∈ N,

d ∈ N, and1 < r ∈ N. ThenA contains no MSTD subsets.

Proof. Without loss of generality we may shift and assumed = 0 andc = 1; the result
now follows immediately from simple algebra. �

3. MSTD SUBSETS OF THE PRIME NUMBERS

We now investigate MSTD subsets of the primes. While Theorem1.4 follows im-
mediately from the Green-Tao theorem, we first conditionally prove there are infinitely
many MSTD subsets of the primes as this argument gives a better sense of what the
‘truth’ should be (i.e., how far we must go before we find MSTD subsets).

3.1. Admissible Prime Tuples and Prime Constellations.We first consider the idea
of primem-tuples. A primem-tuple(b1, b2, . . . , bm) represents a pattern of differences
between prime numbers. An integern matches this pattern if(b1+n, b2+n, . . . , bm+n)
are all primes.

A prime m-tuple (b1, b2, . . . , bm) is called admissible if for all integersk ≥ 2,
{b1, b2, . . . , bm} does not cover all values modulok. If a primem-tuple is not admissi-
ble, it’s easy to see that it can be matched by at most finitely many primes: whenever
n > k, one of(b1 + n, b2 + n, . . . , bm + n) is divisible byk and greater thank, so it’s
not a prime.

It is conjectured in [HL] that all admissiblem-tuples are matched by infinitely many
integers.

Conjecture 3.1(Hardy-Littlewood). Letb1, b2, . . . , bm bem distinct integers, andP (x;
b1, b2, . . . , bm) the number of integers1 ≤ n ≤ x such that{n+ b1, n+ b2, . . . , n+ bm}
consists wholly of primes. Then

P (x) ∼ S(b1, b2, . . . , bm)

∫ x

2

du

(log u)m

whenx → ∞, where

S(b1, b2, . . . , bm) =
∏

p≥2

(

(

p

p− 1

)m−1
p− v

p− 1

)

is a product over all primes, andv = v(p; b1, b2, . . . , bm) is the number of distinct
residues ofb1, b2, . . . bm to modulusp.

We note that when(b1, b2, · · · , bm) is an admissiblem-tuple,v(p; b1, b2, . . . , bm) is
never equal top, soS(b1, b2, . . . , bm) is positive. Therefore this conjecture implies that
every admissiblem-tuple is matched by infinitely many integers.
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3.2. Infinitude of MSTD subsets of the primes. We now show the Hardy-Littlewood
conjecture implies there are infinitely many subsets of the primes which are MSTD sets.

Theorem 3.2. If the Hardy-Littlewood conjecture holds for all admissible m-tuples
then the primes have infinitely many MSTD subsets.

Proof. Consider the smallest MSTD setS = {0, 2, 3, 4, 7, 11, 12, 14}. We know that
{p, p + 2s, p + 3s, p + 4s, p + 7s, p + 11s, p + 12s, p + 14s} is an MSTD set for all
positive integersp, s. Sets = 30, we deduce that if infinitely many primes match the
8-tupleT = (0, 60, 90, 120, 210, 330, 360, 420), then there are infinitely many primes
on MSTD sets.

We check thatT is an admissible prime 8-tuple. Whenm > 8, the eight numbers in
T clearly don’t cover all values modulom. Whenm ≤ 8, we show by computation that
T does not cover all values modulom.

By Conjecture 3.1, there are infinitely many integersp such that{p, p+60, p+90, p+
120, p+ 210, p+ 330, p+ 360, p+ 420} contains all primes. These are all MSTD sets,
so there are infinitely many MSTD sets on primes. �

Of course, all we need is that the Hardy-Littlewood conjecture holds for one admis-
siblem-tuple which has an MSTD subset. We may takep = 19, which gives an explicit
MSTD subset of the primes:{19, 79, 109, 139, 229, 349, 379, 439} (a natural question
is what is the smallest MSTD subset of the primes). If one wishes, one can use the
conjecture to get some lower bounds on the number of MSTD subsets of the primes at
mostx. The proof of Theorem 1.3 follows similarly.

Proof of Theorem 1.3.By the Green-Tao theorem, the primes contain arbitrarily long
arithmetic progressions. Thus for eachN ≥ 14 there are infinitely many pairs(p, d)
such that

{p, p+ d, p+ 2d, . . . , p+Nd} (3.1)

are all prime. We can then take subsets as in the proof of Theorem 3.2. �

APPENDIX A. SUBSETS WITH FINITELY MANY MSTD SETS

We start with some properties of special MSTD sets, and then prove Theorem 1.3.
The arguments are similar to those used in proving Theorem 1.1.

A.1. Special MSTD Sets.Recall an MSTD setS is special if|S+S|− |S−S| ≥ |S|.
For anyx ≥ 2

∑

s∈S |s|, addingx creates|S| + 1 new sums and2|S| new differences.
Let S∗ = S ∪ {x}. Then

|S∗ + S∗| − |S∗ − S∗| ≥ |S|+ (|S|+ 1)− 2|S| = 1, (A.1)

andS∗ is also an MSTD set. Hence, from one special MSTD setS ⊂ {an}
∞
n=1 =: A,

we can generate infinitely many MSTD sets by adding any large integer inA.
Conversely, if a set is not a special MSTD set, then|S + S| − |S − S| < |S|, and

by adding any largex ≥ 2
∑

s∈S |s|, S ∪ {x} has at least as many differences as sums.
Thus only finitely many MSTD sets can be generated by appending one integer fromA
to S.

Note that special MSTD sets exist. Consider the smallest MSTD setS = {0, 2, 3, 4,
7, 11, 12, 14}. Using the method of base expansion, described in [He], we are able to
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obtainS3 containing|S3| = 83 = 512 elements, such that|S3+S3| = |S+S|3 = 263 =
17576, and|S3 − S3| = |S − S|3 = 253 = 15625. Then|S3 + S3| − |S3 − S3| > |S3|.

A.2. Finitely Many MSTD Sets on a Sequence.If a sequenceA = {an}
∞
n=1 contains

a special MSTD setS, then we can get infinitely many MSTD subsets on the sequence
just by adding sufficiently large elements ofA toS. Therefore for a sequenceA to have
at most finitely many MSTD subsets, it is necessary that it hasno special MSTD sets.
Using the result from the previous subsection, we can prove Theorem 1.3.

We establish some notation before turning to the proof. We can writeA as the union
of A1 = {a1, . . . , as−1} andA2 = {as, as+1, . . . }. By Corollary 2.1, we know thatA2

contains no MSTD sets. So any MSTD set must contain some elements fromA1.
We first prove a lemma aboutA2.

Lemma A.1. Let S ′ = {s1, . . . , sk−1} be a subset ofA containing at least 3 elements
ar1 , ar2 , ar3 in A2, with r3 > r2 > r1. Letϕ(k) > r3, and letS = S ′ ∪ {aϕ(k)}. Then
eitherS is not an MSTD set, orS satisfies|S − S| − |S + S| > |S ′ − S ′| − |S ′ + S ′|.

Proof. We follow a similar argument as in Theorem 1.1.
If k ≤ 7, thenS is not an MSTD set.
If k ≥ 8, thenk − ⌊k+3

2
⌋ ≥ 3. Let t = ⌊k+2

2
⌋. Thent ≤ k − 3, andst ≤ sk−3, and

aϕ(k) − st ≥ aϕ(k) − sk−3 = aϕ(k) − aϕ(k−3)

≥ aϕ(k) − aϕ(k)−3

> aϕ(k)−1 = aϕ(k)−1 − a1 (by assumption ona)

≥ sk−1 − a1 ≥ sk−1 − s1. (A.2)

In the setS ′, the greatest difference issk−1−s1. Sinceaϕ(k)−st ≥ sk−1−s1, we know
that aϕ(k) − st, . . . , aϕ(k) − s2, aϕ(k) − s1 are all differences greater than the greatest
difference inS ′.

By a similar argument,st−aϕ(k), . . . , s2−aϕ(k), s1−aϕ(k) are all differences smaller
than the smallest difference inS ′.

SoS contains at least2t = 2⌊k+3
2
⌋ > 2 · k+1

2
= k + 1 new differences compared to

S ′, andS satisfies

|S − S| − |S + S| > |S ′ − S ′| − |S ′ + S ′|, (A.3)

completing the proof. �

Proof of Theorem 1.3.Let K0 be an MSTD subset ofA1. Let Kn be an MSTD subset
of A with n elements inA2, in the formS ∪ {ar1, . . . , arn}, whereS is a subset ofA1

ands ≤ r1 < r2 < · · · < rn. LetSn be any (not necessarily MSTD) subset ofA in the
same form.

The lemma tells us that for anyKn with n ≥ 3, when we add any new elementarn+1

to getSn+1, eitherSn+1 is not an MSTD set, or|Sn+1 − Sn+1| − |Sn+1 + Sn+1| ≥
|Kn −Kn| − |Kn +Kn|+ 1.

Let
d = max

K3

(|K3 +K3| − |K3 −K3|, 1). (A.4)

Then for alln > d + 3, consider anySn. For3 ≤ k ≤ n, defineSk as the set obtained
by deleting the(n− k) largest elements fromSn.
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If Sk is not an MSTD set for anyk ≥ 3, by Lemma A.1 eitherSk+1 is not an MSTD
set, or|Sk+1−Sk+1| − |Sk+1+ Sk+1| > |Sk −Sk| − |Sk +Sk| ≥ 0, in which caseSk+1

is also not an MSTD set. Assume thatSn is an MSTD set, and the previous argument
shows thatSn−1 to S3 must all be MSTD sets, and we have

|Sn − Sn| − |Sn + Sn| > |S3 − S3| − |S3 + S3|+ d > 0, (A.5)

sinceS3 is one of theK3’s. ThenSn is not an MSTD set, a contradiction.
Therefore the previous assumption is false, andSn is not an MSTD set for alln >

d+ 3. This means that every MSTD set onA is one ofK0, K1, K2, . . . , Kd+3.
Forn ≥ 0, let kn be the number of all possibleKn. We can show by induction that

• kn is finite for alln ≥ 0, and
• everyKn is not a special MSTD set.

We have 4 base cases.
We know thatA1 is finite, sok0, which is the number of MSTD subsets ofA1, is

finite.
Any K0 is a subset of{a1, . . . , as−1}, which is a subset ofA′ = {a1, . . . , a4s+6}. So

suchK0 is not a special MSTD set.
Consider the index4s. We claim that

a4s >
∑

a∈A1

a. (A.6)

This is because
∑

a∈A1

a < s · as

<
s

2
(as + as+2) <

s

2
· as+3

<
s

4
(as+3 + as+5) <

s

4
· as+6 . . .

< as+3 log2(s)

< as+3s = a4s

Therefore for allr1 ≥ 4s,

ar1 ≥ a4s >
∑

a∈A1

a. (A.7)

Consider anyS1 with r1 ≥ 4s. It contains a set of elementsS = {s1, . . . , sm} in A1

andar1 in A2. We know that
∑

s∈S s < ar1, and we also know thatS is not a special
MSTD set. SoS1 = S ∪ {ar1} is not an MSTD set.

Therefore forS1 to be an MSTD set,r1 must be smaller than4s. We conclude that
k1 is finite.

Then anyK1 is a subset of{a1, . . . , a4s}, which is a subset ofA′. Hence, suchK1 is
not a special MSTD set.

Consider the index4s+ 3. For allr2 ≥ 4s+ 3,

ar2 − ar2−1 > ar2−3 ≥ a4s >
∑

a∈A1

a. (A.8)
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Consider anyS2 with r2 ≥ 4s+3. It contains some elementsS = {s1, . . . , sm} in A1

andr1, r2 in A2. We havear2 − ar1 ≥ ar2 − ar2−1. We also havear2 − ar2−1 >
∑

s∈S s.
Thereforear2 >

(
∑

s∈S s
)

+ ar1 , andS ∪ {ar1} is not a special MSTD set. Hence,
S2 = S ∪ {r1, r2} is not an MSTD set.

Then forS2 to be an MSTD set,r2 must be smaller than4s+ 3. We conclude thatk2
is finite.

We also know that anyK2 is a subset of{a1, . . . , a4s+1}, which is a subset ofA′.
Therefore suchK2 is not a special MSTD set.

Consider the index4s+ 6. For allr3 ≥ 4s+ 6,

ar3−3 − ar3−4 > ar3−6 ≥ a4s >
∑

a∈A1

a. (A.9)

Consider anyS3 with r3 ≥ 4s+ 6. We writeS3 asS ∪ {ar1 , ar2, ar3}. If |S| < 5, we
know that|S3| < 8, andS3 is not an MSTD set. We can then assume that|S| ≥ 5. We
have 2 cases.

In the first case,r2 ≤ r3−3, soar3−ar2−ar1 ≥ ar3−ar3−3−ar3−4 ≥ ar3−1−ar3−4 ≥
ar3−2 > ar3−6 >

∑

s∈S s.
We know thatS ∪ {ar1 , ar2} is not a special MSTD set. So addingar3 with ar3 >

(
∑

s∈S s
)

+ ar1 + ar2 creates a non-MSTD set.
In the second case,r2 > r3 − 3, soar3 − ar2 ≥ ar3 − ar3−1 >

∑

s∈S s. Similarly,
ar2 − ar1 > ar3−2 − ar3−3 >

∑

s∈S s.
Therefore the differences betweenar1 , ar2 , ar3 are large relative to the elements inS,

andS3+S3 consists of 4 copies ofS+S (S+S, ar1 +S+S, ar2 +S+S, ar3 +S+S)
plus 5 or 6 more elements, andS3 − S3 consists of 7 copies ofS − S plus 4 or 6 more
elements.

We have|S3+S3| = 4|S+S|+ c1 and|S3−S3| = 7|S−S|+ c2. |S−S| is at least
2|S| − 1. SinceS is not a special MSTD set, we know that|S + S| < |S − S|+ |S|.

Then

|S + S|

|S − S|
< 1 +

|S|

|S − S|
≤ 1 +

|S|

2|S| − 1
≤ 1 +

5

9
=

14

9
<

7

4
. (A.10)

This tells us that4|S + S| < 7|S − S|. To determinec1, c2, we consider 2 cases.

• ar2 −ar1 = ar3−ar2 . In this case there are 5 more sums and 4 more differences.
Since4|S + S|+ 5 ≤ 7|S − S|+ 4, we have|S3 + S3| ≤ |S3 − S3|. ThenS3 is
not an MSTD set.

• ar2 − ar1 6= ar3 − ar2 , and we have 6 more sums and 6 more differences. Since
4|S + S| + 6 < 7|S − S| + 6, we know that|S3 + S3| < |S3 − S3|, andS3 is
not an MSTD set.

Hence, forS3 to be an MSTD set,r3 must be smaller than4s + 6. We conclude that
k3 is finite.

In addition, anyK3 is a subset ofA′ = {a1, . . . , a4s+6}, so suchK3 is not a special
MSTD set.

Assume thatkn is finite for somen ≥ 3. Equivalently, assume that there existstn
such that ifrn ≥ tn, then any set containingarn is not an MSTD set. We can show that
kn+1 is finite.
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Let tn+1 be the index such that for allrn+1 ≥ tn+1,

arn+1
>
∑

x<rn

ax. (A.11)

Consider anyS ⊆ A1, and letSn = S ∪ {ar1 , · · · , arn} for any {ar1, · · · , arn}.
Consider adding anyarn+1

with rn+1 ≥ tn+1 to Sn. We have two cases.

• If rn < tn, thenSn is, by inductive hypothesis, not a special MSTD set. So
addingarn+1

>
∑

x∈Sn

x creates a non-MSTD set.
• If rn ≥ tn, thenSn is, by inductive hypothesis, not an MSTD set. So|Sn−Sn|−
|Sn + Sn| > 0. Sincen ≥ 3, we can apply Lemma A.1, and eitherSn+1 is not
an MSTD set, or|Sn+1 − Sn+1| − |Sn+1 + Sn+1| > |Sn − Sn| − |Sn + Sn| > 0,
in which caseSn+1 is still not an MSTD set.

We conclude that for all MSTD setsSn+1, we must havern+1 < tn+1. Sokn+1 is
finite.

Consider any MSTD setKn+1 = Sn ∪ {arn+1
}. Applying lemma A.1 again, we have

|Kn+1 −Kn+1| − |Kn+1 +Kn+1| > |Sn − Sn| − |Sn + Sn|. We know, from inductive
hypothesis, thatSn is not a special MSTD set. Therefore all possibleKn+1 are not
special MSTD sets.

By induction,kn is finite for alln ≥ 0, and allKn are not special MSTD sets.
We have previously shown that every MSTD set onA is one ofK0, K1, K2, . . . , Kd+3.

We now know that there are finitely many sets for each group, sothere are finitely many
MSTD sets onA. �
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