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Abstract. Let pn denote the n-th prime number, and consider the prime
number graph, the collection of points (n, pn) in the plane. Pomerance uses
the points lying on the boundary of the convex hull of this graph to show that
there are infinitely many n such that p2n < pn−i + pn+i for all i < n. More
recently, the primes on the boundary of this convex hull have been considered
by Tutaj. We resolve several conjectures of Pomerance and Tutaj by giving
improved bounds on the number and distribution of these primes as well as
related forms of ‘extreme’ primes.

1. Introduction

Let pn denote the n-th prime number, and consider the collection of points
(n, pn) in the plane R2, which we refer to as the prime number graph. The work
of Zhang [12] and Maynard [6] and Tao implies there exist infinitely many pairs
of consecutive points in this graph with some fixed, finite, integral slope between
them. Currently we know this slope is at most 246, and the twin-prime conjecture
is true if and only if there are infinitely many such pairs with slope exactly 2.
On the other hand, from the prime number theorem, we know that this is not
the behaviour of these points on average, as the collection of points which form
the prime number graph tends upward faster than any linear function, growing
roughly as n log n, so the slopes between the first n consecutive points is about
log n on average.

Because of the irregularities in the gaps between primes, the growth and dis-
tribution of these points can be fairly erratic. For example, if one considers the
shape that is created by taking all of the line segments between consecutive points
in this graph, the result is far from being a convex subset of the plane.

One can take the convex hull of this shape, however, which smooths out most
of the irregularity in the primes’ distribution, and ask about the collection of
points (n, pn), which are vertex points of this convex hull. The subset of primes
forming such points, which we will refer to in the following as the convex primes,
was studied by Pomerance in [9], and recently by Tutaj [11] and additionally is
discussed in problem A14 of Guy’s book of unsolved problems in number theory
[5]. In what follows we will let c1, c2, . . . denote the indices of the sequence of
convex primes, pc1 , pc2 , . . ..
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Figure 1. The first 30 points on the prime number graph, along
with the lower boundary of the convex hull of the prime number
graph.

Pomerance uses the set of convex primes, which he shows is an infinite set, to
study a second subset of the primes, the midpoint convex primes, which are those
prime numbers, pn, which satisfy the inequality

2pn < pn−i + pn+i for all positive i < n. (1)

Because this condition is equivalent to the requirement that the line segment
connecting any two points (n − i, pn−i), and (n + i, pn+i) pass above the point
(n, pn) we see that the set of convex primes is clearly a subset of the midpoint
convex primes, and so the infinitude of the former set immediately implies the
infinitude of the latter.

Pomerance also looks at a multiplicative version of inequality (1), those primes
which satisfy the inequality

p2n > pn−ipn+i for all positive i < n. (2)

Primes satisfying this condition have become known as good primes. Using the
log-prime number graph, the collection of points (n, log pn), and specifically those
primes, referred to here as the log-convex primes, corresponding to the vertices
of the convex hull of the log-prime number graph, Pomerance likewise shows that
there are infinitely many good primes. This disproved a conjecture of Erdős, who
had conjectured that there were only finitely many good primes, while confirming
one of Selfridge, who had conjectured the opposite.

Consider the line connecting the origin (0,0) with any vertex of the convex hull,
(n, pn). This line has slope pn

n
and, with the exception of the first few convex

primes (specifically the points (1,2), (2,3), and (4,7)), one finds that the portion
of the line segment to the right of the line x = 1 lies entirely within this convex
hull, hence strictly above and to the left of its lower boundary. This means that
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the slopes of these lines must be increasing, and so within the sequence of convex
primes pc1 , pc2 , . . . we have necessarily that

pci
ci

<
pci+1

ci+1

(3)

for all i ≥ 2.
Pomerance points out that a result of Erdős and Prachar [4], which shows that

any subsequence of the primes which has the property (3) has relative density 0
in the primes, clearly implies the same for the convex primes, and so the count of

the convex primes up to x is o
(

x
log x

)
. Pomerance also notes that another result

of Erdős [3] shows that the midpoint convex primes have relative upper density
strictly less than one as well.

Note that while the convex primes are closely related to the set of primes pn
with the property that

pn
n
< min

1≤i<∞

pn+i
n+ i

, (4)

they are not the same set, and in practice it appears that the set of primes satis-
fying (4) is a substantially larger set, of which the convex primes appear to be a
subset.

Tutaj [11] proves the following theorem, conditional on the Riemann Hypothesis.

Theorem 1.1 (Tutaj). Assume the Riemann hypothesis, and let pci denote the
i-th convex prime. Then

lim
i→∞

pci+1

pci
= 1.

He also makes several conjectures, two of which we restate here for reference.

Conjecture 1.2 (Tutaj). The sum of the reciprocals of the convex primes,
∞∑
i=1

1

pci

converges.

Conjecture 1.3 (Tutaj). The sum of the reciprocals of the logarithms of the
convex primes,

∞∑
i=1

1

log pci

diverges.

In Theorem 2.2 we give a substantially better upper bound than o(π(x)) for the
convex primes, namely that their count is O

(
π(x)2/3

)
. Conjecture 1.2 follows as a

corollary. Both Conjecture 1.3 and an unconditional version of Theorem 1.1 follow
as corollaries to Theorem 2.3, in which we prove an upper bound for the size of a
the gap between two convex primes. (We also get a substantial improvement to
this result, Theorem 2.4, if we assume the Riemann hypothesis.)

Additionally, we get a lower bound, elog
3/5−ε x for the number of convex primes

up to x, and assuming the Riemann Hypothesis this can be improved to b′x1/4

log3/2 x

for some constant b′ > 0. These results were claimed without proof in [9]. In
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Section 4 we confirm another conjecture Pomerance made in that paper, that the
log-convex primes have relative density zero in the primes.

Finally, in Section 5 we give results of computations on the convex primes and
log-convex primes up to 1013. Based on these computations it appears that the
exponent 1/4 arising in the lower bound of the convex primes is likely to be closer
to the correct power of x in the counting function of the convex primes up to x.

2. Counting the Convex Primes

We give here a substantially improved upper bound for the count of the convex
primes, using only the prime number theorem, and the fact that there aren’t many
possible rational slopes with small denominator. First however, we prove a lemma
regarding the slope of a line segment along the edge of the convex hull.

Lemma 2.1. If (m, pm) is any point on the boundary of the convex hull of the
prime number graph, then the slope of the line segment of the convex hull following
this point has slope

logm+ log logm+ o(1)

as m→∞.

Proof. Suppose, for the sake of contradiction, that there exist arbitrarily large m
where (m, pm) is on the boundary of the convex hull and the slope is greater than
logm+ log logm+ d for some d > 0.

Fix α > 1 chosen so that logα + 1+d
α
− d ≤ 1 − ε for some ε > 0. Then

for sufficiently large m, at those values of m where the slope of the convex hull
following pm is greater than logm + log logm + d, we have (using the fact, from
the prime number theorem, that pm = m(logm+ log logm− 1 + o(1))) that

pdαme ≥ pm + (αm−m)(logm+ log logm+ d)

= m(logm+ log logm− 1 + o(1)) + (αm−m)(logm+ log logm+ d)

= αm(logαm+ log logαm− logα− 1 + d

α
+ d+ o(1))

≥ αm(logαm+ log logαm− 1 + ε+ o(1))

as m→∞, which would contradict the prime number theorem.
Similarly, if we suppose there are arbitrarily large m where the slope is less

than logm + log logm− d for some d > 0, we can fix a 0 < β < 1 chosen so that
log β + 1−d

β
+ d ≤ 1 − ε for some ε > 0. Then for sufficiently large m, where the

slope of the convex hull following pm is less than logm + log logm − d, we have
that

pdβme ≥ pm − (m− βm)(logm+ log logm− d)

= m(logm+ log logm− 1 + o(1))− (m− βm)(logm+ log logm− d)

= βm(log βm+ log log βm− log β − 1− d
β
− d+ o(1))

≥ βm(log βm+ log log βm− 1 + ε+ o(1))

as m→∞, again contradicting the prime number theorem. �

We now get an upper bound for the count of the convex primes.
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Theorem 2.2. The count of the convex primes up to x is O
(

x2/3

log2/3 x

)
.

Proof. We count those convex primes in the dyadic interval (1
2
x, x]. The slopes

between the consecutive convex primes are necessarily strictly increasing rational
numbers given by

pcj+1
− pcj

cj+1 − cj
.

Because we are counting those pcj ∈
(
1
2
x, x
]
, we have 1

2
π(x) < π

(
1
2
x
)
< cj ≤

π(x). From Lemma 2.1 we know that the slope at each pcj is contained in some
interval of length log 2 + o(1). If cj − cj−1 = k, this leaves at most k(log 2 + o(1))
possible values of pcj−pcj−1

. Thus, for each integer k, there are at most O(k) pairs

pcj , pcj+1
in (1

2
x, x] with cj − cj−1 = k, or O(K2) such convex primes which follow

a gap between indices of consecutive convex primes at most K apart, a parameter
to be chosen shortly.

The number of consecutive convex primes pcj−1
and pcj in the interval

(
1
2
x, x
]

with cj − cj−1 > K is at most O
(

x
K log x

)
. Equating K2 with x

K log x
gives K =

(x/ log x)1/3 and thus that the total number of convex primes in the interval (1
2
x, x]

is O
(

x2/3

log2/3 x

)
. The result then follows by summing dyadically. �

Igor Shparlinski points out that this result also follows from a result of George
Andrews [1]. Andrews shows that any convex region of the plane with area A,
bounded by line segments whose endpoints lie in Z2, has at most O(A1/3) non-
collinear vertices. In this case, the region bounded below by the convex hull of
the prime number graph and above by the line segment connecting (1,2) to the
vertex corresponding to the greatest convex prime less than x is a convex region

with area O
(

x2

log x

)
.

As mentioned in the introduction, this proves Tutaj’s Conjecture 1.2, showing
that the sum of the reciprocals of the convex primes converges. We now give an
upper bound for the size of the gap between consecutive convex primes, which
will, as a corollary give us a lower bound for the count of the convex primes.

Theorem 2.3. There exists a constant B > 0 such that for sufficiently large values
of i the gap between consecutive convex primes pci and pci+1

, is bounded above by

pci+1
− pci ≤ pci exp

{
−B log3/5 pci
(log log pci)

1/5

}
.

Proof. The best known error term for the prime number theorem tells us that

ci = li(pci) +O

(
pci exp

{
−A log3/5 pci
(log log pci)

1/5

})
(5)

for some constant A > 0. Thus, there exists a constant D > 0 such that all of the
points of the prime number graph lie between the (implicitly defined as a function
of x) curves

x = li(y)−Dy exp

{
−A log3/5 y

(log log y)1/5

}
(6)
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and

x = li(y) +Dy exp

{
−A log3/5 y

(log log y)1/5

}
. (7)

We will find the maximal length of a line segment bounded between these two
curves, and thus the maximal length of a line segment forming part of the boundary
of the convex hull of the prime number graph.

Because both of these curves are convex and curved upward with unbounded
derivative, we see that any line partially lying between these two curves with a
sufficiently steep, positive slope will intersect the outer curve (7) twice. Since the
slopes of the lines forming the boundary of the convex hull tend to infinity and
the line segments necessarily exist between these two curves such a segmen must
lie below and to the right of the inner curve (6). In fact the longest such a line
segment could possibly be, given these constraints, would be if it began and ended
at the boundary of the outer curve and was tangent to the inner curve in between.

Suppose then that a line segment contained between these two curves intersects
(7) at points (x1, y1) and (x2, y2), x1 < x2. Let ∆ = y2 − y1 and let (x0, y0) =(
x1+x2

2
, y1+y2

2

)
be the midpoint of this line.

In order for our line segment to remain to the right of (6), we need in particular
that the midpoint of this line segment does, and so

li y0 −Dy0 exp

{
−A log3/5 y0
(log log y0)1/5

}
< x0 =

x1 + x2
2

=
li y1

2
+
D

2
y1 exp

{
−A log3/5 y1
(log log y1)1/5

}
+

li y2
2

+
D

2
y2 exp

{
−A log3/5 y2
(log log y2)1/5

}
.

(8)

Using the Taylor series for liy, we have that

li (y + t) = li y +
t

log y
− t2

2y log2 y
+O

(
t3

y2 log2 y

)
(9)

and so

li y0 −
li y1 + li y2

2
= li y1 +

∆

2
− li y1 + li y1 + ∆

2

= li y1 +
∆

2 log y1
− ∆2

8y1 log2 y1
− li y1 −

∆

2 log y1
+

∆2

4y1 log2 y1
+O

(
∆3

y21 log2 y1

)
=

∆2

8y1 log2 y1
+O

(
∆3

y21 log2 y1

)
. (10)
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Using this in (9), we get that

∆2

8y1 log2 y1
+O

(
∆3

y21 log2 y1

)
< D

(
y0 exp

{
−A log3/5 y0
(log log y0)1/5

}
+
y1
2

exp

{
−A log3/5 y1
(log log y1)1/5

}

+
y2
2

exp

{
−A log3/5 y2
(log log y2)1/5

})

< D exp

{
−A log3/5 y1
(log log y1)1/5

}(
y0 +

y1
2

+
y2
2

)
= D exp

{
−A log3/5 y1
(log log y1)1/5

}
(2y1 + ∆), (11)

so that

∆2 < Dy1 log2 y1 exp

{
−A log3/5 y1
(log log y1)1/5

}
(2y1 + ∆) +O

(
∆3

y1

)
, (12)

which means that

∆� y1 log y1 exp

{
−A log3/5 y1

2(log log y1)1/5

}
. (13)

This upper bound for ∆ means that the gap between the convex primes pci and
pci+1

is

pci+1
− pci � pci log pci exp

{
−A log3/5 pci

2(log log pci)
1/5

}

≤ pci exp

{
−B log3/5 pci
(log log pci)

1/5

}
.

for some constant B > 0. �

Note that if we assume the Riemann hypothesis, we can use the stronger form
of the prime number theorem, that

n = li pn +O (
√
pn log pn) ,

and the same proof gives the following improvement.

Theorem 2.4. Assume the Riemann hypothesis, then the gap between consecutive
convex primes pci and pci+1

, is bounded above by

pci+1
− pci � p3/4ci

log3/2 pci .

It was claimed without proof in [9] that the best known results on the error
term in the prime number theorem imply that the count of the convex primes up

to x is at least ec log
3/5−ε x for some c > 0. This follows as an immediate corollary

to Theorem 2.3.
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Corollary 2.5. There exists a constant B > 0 such that the count of the number
of convex primes up to x is at least

exp

{
B log3/5 x

(log log x)1/5

}
.

Likewise, if one assumes the Riemann Hypothesis, then we get the following as
a corollary to Theorem 2.4.

Corollary 2.6. Assume the Riemann Hypothesis. Then there exists a constant
B′ > 0 such that the count of the number of convex primes up to x is at least

B′x1/4

log3/2 x
.

The lower bound of Corollary 2.5 also has another corollary which proves Con-
jecture 1.3.

Corollary 2.7. The sum of the reciprocals of the logarithms of the convex primes,

∞∑
i=1

1

log pci

diverges.

Furthermore, by showing that pci+1
−pci = o(pci), Theorem 2.3 gives an uncondi-

tional proof of Theorem 1.1, that the ratio of consecutive convex primes converges
to 1.

Corollary 2.8. Let pci denote the i-th convex prime. Then

lim
i→∞

pci+1

pci
= 1.

3. Edge convex primes

The results discussed above, except for Lemma 2.1, apply only for points (n, pn)
which are vertex points of the convex hull of the prime number graph. It is possible
for points to lie on the boundary of the convex hull without being vertex points,
for example, the point (3, 5) lies on the line segment between the vertex points
(2, 3) and (4, 7).

In the computation of the convex primes up to 1013 (discussed further in Section
5) we find only 5 examples of primes with this property, namely 5, 13, 23, 31, and
43. Based on this evidence we conjecture the following.

Conjecture 3.1. There are only finitely many primes pn for which the point
(n, pn) lies on the boundary of the convex hull of the prime number graph without
being a vertex point of it.

Despite this conjecture, obtaining upper bounds for the number of these edge
convex primes is more difficult than for the convex primes. Combining the results
of Theorem 2.3 with the ideas of Theorem 2.2 we can get the following upper
bound.
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Theorem 3.2. The count of the edge convex primes, those primes which lie on
the boundary of the convex hull of the prime number graph without being vertices

of it, is O
(
x exp

{
−b′ log3/5 x

(log log x)1/5

})
for some constant b′ > 0.

Proof. We count those edge convex primes in the dyadic interval (1
2
x, x]. As noted

before, the slopes of the lines forming the boundary of the convex hull are nec-
essarily strictly increasing rational numbers contained in some interval of length
log 2 + o(1), from Lemma 2.1. From Theorem 2.3 we see that there are necessarily

at least exp
{
B log3/5 x

(log log x)1/5

}
distinct line segments in this interval (for some B > 0),

and that each line segment ranges over O
(
x exp

{
−B log3/5 x

(log log x)1/5

})
primes.

If a line segment of the boundary of the convex hull has slope a
d
, with a and d

coprime, then the edge convex primes lying on this line segment must be spaced
at least d primes apart, so the maximum number of edge convex primes contained

on such an interval is O
(
x
d

exp
{
−B log3/5 x

(log log x)1/5

})
Since each of the slopes is a rational number contained in an interval of length

log 2 + o(1) there are O (ϕ(d)) line segments forming the convex hull in this range
with slope whose denominator in lowest terms is d, and thus the total number of
edge convex primes that can lie on any line segment whose slope has denominator

at most D is O
(
Dx exp

{
−B log3/5 x

(log log x)1/5

})
. Because the total number of edge

convex primes which lie on those line segments whose slope has denominator (in
reduced form) greater than D is O

(
x
D

)
, we find, by optimizing D, that the total

number of edge convex primes in this interval is O
(
x exp

{
−1

2
B log3/5 x

(log log x)1/5

})
. The

result then follows by summing dyadically. �

Assuming the Riemann Hypothesis, this can be improved using Theorem 2.4.

Theorem 3.3. Assuming the Riemann Hypothesis, we have that the count of the

edge convex primes is O
(
x7/8 log3/4 x

)
.

4. Multiplicatively Convex Primes

In the paper [9] where Pomerance introduced the convex primes, he also con-
sidered the log-convex primes, those primes forming the vertices of the boundary
of the convex hull of the log-prime number graph. Unlike the convex primes, he
was not able to show that they had relative density zero among the primes, but
conjectured that this was the case. We prove that this is in fact the case here.
First however we prove a lemma regarding the slope of the boundary of the convex
hull of the log-prime number graph.

In the following we adopt the notation of [2] and use ali(x) to denote the func-
tional inverse of the logarithmic integral function, li(x).

Lemma 4.1. If (m, log pm) is any point on the boundary of the convex hull of
the log-prime number graph, then the slope of the line segment of the convex hull
following this point has slope

ali′(m)

ali(m)
+O

(
1

m
exp

{
− A log3/5m

2(log logm)1/5

})
(14)
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as m→∞, for some A > 0.

Proof. We can rewrite equation (5), the strongest known form of the prime number
theorem, as

pn = ali(n) +O

(
n exp

{
−A log3/5 n

(log log n)1/5

})
, (15)

and so,

log pn = log ali(n) +O

(
exp

{
−A log3/5 n

(log log n)1/5

})
. (16)

Note that
d

dx
log ali(x) =

ali′(x)

ali(x)
∼ log x

x log x
=

1

x

and that
d2

dx2
log ali(x) ∼ − 1

x2
.

Suppose rather, for contradiction, that for any arbitrarily large constant C, there
exist infinitely many di where the slope following the point (di, log pdi) is less than
ali′(di)
ali(di)

− C
di

exp
{
− A log3/5 di

2(log log di)1/5

}
.

Let f(x) = exp
{
− A log3/5 x

2(log log x)1/5

}
. Because the slopes of the boundary of the

convex hull of the log-prime number graph are strictly decreasing, we see that for
such values of di we have, using the Taylor series approximation of log ali(x), that

log pbdi+dif(di)c ≤ log pdi + dif(di)

(
ali′(di)

ali(di)
− C

di
f(di)

)
= log ali(di) + dif(di)

ali′(di)

ali(di
− Cf(di)

2 +O
(
f(di)

2
)

= log ali (di + dif(di))− Cf(di)
2 +O

(
f(di)

2
)
. (17)

Because the constant C can be taken arbitrarily large, equation (17) contradicts
equation (16), thus proving that the slope is at least as large as expression (14).
The corresponding upper bound follows by essentially the same argument. �

We are now able to see that the log-convex primes have relative density zero
among the primes.

Theorem 4.2. The count of the number of log-convex primes up to x, as x→∞,
is at most x

log4/3−o(1) x
.

Proof. Denote by D(t, x) the number of primes p ≤ x for which p+ t is also prime.
Brun’s sieve can be used to show (see for example [10]) that

D(t, x) ≤ c

∏
p|t
p≤x

(
1− 1

p

)−1 x

log2 x

for some absolute constant c.
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Fix x and consider pairs of primes

x

log x
≤ pn < pn+k ≤ x (18)

with k ≤ log1/3 x. (The number of log-convex primes less than x
log x

is already at

most π
(

x
log x

)
∼ x

log2 x
so their contribution is insignificant.)

Suppose a pair of primes pn and pn+k in this range are consecutive log-convex

primes. Then the slope of the line conecting the corresponding points is log pn+k−log pn
k

,
and so Lemma 4.1 tells us that∣∣∣∣ log pn+k − log pn

k
− ali′(n)

alin

∣∣∣∣ = O

(
1

n
exp

{
−A log3/5 n

(log log n)1/5

})
for some A > 0. Letting ∆ = pn+k − pn, we can write

log pn+k − log pn
k

=
log(pn + ∆)− log pn

k
=

∆

kpn
+O

(
∆2

kp2n

)
. (19)

So, assuming ∆ ≤ nε, and using the fact that

pn
ali′(n)

alin
= log n+O(log log n) = log x+O(log log x)

for n in the range (18), we find that

|∆− k log x| ≤ kb log log x (20)

for some absolute constant b.
Thus, the total number of such pairs is bounded above by

∑
1≤k≤log1/3 x

∑
t∈Ik

D(t, x) ≤
∑

1≤k≤log1/3 x

∑
t∈Ik

c

∏
p|t

(
1− 1

p

)−1 x

log2 x
(21)

where Ik = {t : |t− k log x| ≤ bk log log x}. Now, using Mertens’ theorem,∑
t∈Ik

∏
p|t

(
1− 1

p

)−1
< 2bk log log x

∏
p≤k(log x+b log log x)

(
1− 1

p

)−1
= O(k log log x log(k log x))

= O(k(log log x)2).

So, ∑
1≤k≤log1/3 x

∑
t∈Ik

D(t, x)�
∑

1≤k≤log1/3 x

k(log log x)2
x

log2 x
< (log log x)2

x

log4/3 x
.

(22)

Any log-convex primes not involved in one of these pairs must be spaced at least
log1/3 x primes distant from the next log-convex prime, so the count of such iso-
lated log-convex primes is less than 1

log1/3 x
π(x). Thus the contribution from (22)

dominates, and we see that the count of the log-convex primes up to x is at most
x

log4/3−o(1) x
. �
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5. Data and Future Work

The table below gives the count C(x) of the number of convex primes up to x
for x ranging up to 1013, as well as the exponent one could raise x to in order
to approximate this value of C(x). Based on the data, it appears that the lower

bound on the order of x1/4

log3/2 x
, (obtained by assuming the Riemann Hypothesis,

Corollary 2.6) may not be far from the truth, though it seems that C(x) may be
growing like xc for some constant c closer to 0.285.

x
C(x) = # of convex

primes up to x

logC(x)

log x

101 3 0.47712
102 6 0.38908
103 12 0.35973
104 22 0.33561
105 36 0.31126
106 65 0.30215
107 121 0.29754
108 223 0.29354
109 413 0.29066
1010 756 0.28785
1011 1409 0.28626
1012 2621 0.28487
1013 5150 0.28552

As mentioned in Section 3, there were only 5 edge convex primes in this range,
all at most 43. From this data it seems natural to conjecture that there are only
finitely many edge convex primes, even though the upper bound we have for their
count, Theorem 3.2 is far weaker than our bound for the convex primes, Theorem
2.2.

Pomerance originally studied the convex primes as a way to show that there
were infinitely many midpoint convex primes, those primes satisfying (3), since
the convex primes are a subset of the midpoint convex primes. The midpoint
convex primes appear to be far more numerous than the convex primes.

x
M(x) = # of midpoint
convex primes up to x

logM(x)

log x

101 3 0.47712
102 8 0.45154
103 25 0.46598
104 89 0.48735
105 288 0.49188
106 1148 0.50999
107 4504 0.52194
108 17293 0.52973
109 71804 0.53957
1010 283737 0.54529
1011 1195764 0.55251
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On the other hand, it seems clear from the data that the midpoint convex
primes are a relatively sparse subset of the primes, growing slightly faster than√
x, however it is still open to prove that their count is o(π(x)).
In light of (1), the midpoint convex primes can be characterized as those primes

pn, where the quantity

Mn = min
1≤i<n

(pn+i + pn−i)− 2pn (23)

is positive. Included below are two histograms, showing the distribution of Mn for
n < 1.6× 108. The first shows the entire distribution, the second shows the (very
minor) tail of the distribution for non-negative values.

The distribution of this quantity Mn would be interesting to study further.
Based on the data it appears likely that Mn can be arbitrarily large. It can easily
be seen that Mn can be arbitrarily negative, as even

pn+1 + pn−1 − 2pn = (pn+1 − pn)− (pn − pn−1),

the difference between consecutive gaps, can be arbitrarily negative. In fact Pintz
[8] shows that lim inf

n→∞
pn+1−pn
pn−1−pn = 0. Note also how the values of Mn have a tendency

to avoid multiples of 6.

Figure 2. Distribution of the minimum of Mn for n < 1.6 × 108

and the non-negative part of that distribution.

We also give the corresponding counts for the log-convex primes and the good
primes, which appear to be somewhat more numerous than the convex primes and
midpoint convex primes respectively.
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x
L(x) =# of log-convex

primes up to x

logL(x)

log x
G(x) = # of good

primes up to x

logG(x)

log x

101 1 0 1 0
102 9 0.47712 11 0.52070
103 25 0.46598 44 0.54782
104 56 0.43705 176 0.56138
105 111 0.40906 671 0.56534
106 248 0.39908 2668 0.57103
107 533 0.38953 10942 0.57701
108 1060 0.37816 45150 0.58183
109 2182 0.37098 189365 0.58637
1010 4555 0.36585
1011 9394 0.36117
1012 19510 0.35752
1013 40901 0.35475

It would be interesting to develop a heuristic argument, possibly using a prob-
abilistic model for the prime numbers, in order to conjecture what the correct
asymptotic growth rate of these counts might be.

Obviously proving proving asymptotic formulae for these counts would be ideal,
though this may be difficult. It would be interesting if progress could be made on
even the following questions:

Question 5.1. Can one prove that the counting function of the midpoint primes,
M(x) is o(π(x))? Or, likewise, that the counting function for the good primes
G(x) is o(π(x))?

Question 5.2. Clearly C(x) < M(x) and L(x) < G(x), can we prove that C(x) =
o(M(x)), or that L(x) = o(G(x))?

One could also consider the convex hull of other graphs related to the prime
numbers, for example the collection of points (li(pn), pn), will have infinitely many
points on its convex hull both above and below as the slopes of the bounding
convex hull approach 1.
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4. P. Erdős and K. Prachar, Sätze und Probleme über pk/k, Abh. Math. Sem. Univ. Hamburg
25 (1961/1962), 251–256. MR 0140481 (25 #3901)

5. R. Guy, Unsolved problems in number theory, Springer, New York, 2004.
6. J. Maynard, Small gaps between primes, Ann. of Math. (2) 181 (2015), no. 1, 383–413.

MR 3272929
7. N. McNew, Multiplicative problems in combinatorial number theory, Ph.D. thesis, Dartmouth

College, 2015.
8. J. Pintz, Polignac numbers, conjectures of Erdős on gaps between primes, arithmetic pro-
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